
Developing Domain-Specific Mashup Tools for End Users

Florian Daniel, Muhammad Imran, Felix Kling, Stefano Soi,
Fabio Casati and Maurizio Marchese

University of Trento, Via Sommarive 5, 38123, Trento, Italy
lastname@disi.unitn.it

ABSTRACT
The recent emergence of mashup tools has refueled research
on end user development, i.e., on enabling end users without
programming skills to compose own applications. Yet, simi-
lar to what happened with analogous promises in web service
composition and business process management, research has
mostly focused on technology and, as a consequence, has
failed its objective. Plain technology (e.g., SOAP/WSDL
web services) or simple modeling languages (e.g., Yahoo!
Pipes) don’t convey enough meaning to non-programmers.

We propose a domain-specific approach to mashups that
“speaks the language of the user”, i.e., that is aware of the
terminology, concepts, rules, and conventions (the domain)
the user is comfortable with. We show what developing a
domain-specific mashup tool means, which role the mashup
meta-model and the domain model play and how these can
be merged into a domain-specific mashup meta-model. We
apply the approach implementing a mashup tool for the re-
search evaluation domain. Our user study confirms that
domain-specific mashup tools indeed lower the entry barrier
to mashup development.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous; D.1 [Softwa-

re]: Programming Techniques

Keywords
Domain-Specific Mashups, End-User Development

1. INTRODUCTION
Mashups are typically simple web applications that, in-

stead of being coded from scratch, are developed by inte-
grating and reusing available data, functionalities, or pieces
of user interfaces accessible over the Web. Mashup tools

aim at enabling non-programmers (web users) to develop
own applications. Yet, similar to what happened in service
composition, the mashup platforms developed so far either
expose too much functionality and too many technicalities
so that they are powerful and flexible but suitable only for
programmers, or they only allow compositions that are so
simple to be of little use for most practical applications.

We believe that the heart of the problem is that it is
impractical to design tools that are generic enough to cover

Copyright is held by the author/owner(s).
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

a wide range of application domains, powerful enough to en-
able the specification of non-trivial logic, and simple enough

to be actually accessible to non-programmers. At some
point, we need to give up something. In our view, this some-
thing is generality. Giving up generality in practice means
narrowing the focus of a design tool to a well-defined domain

and tailoring the tool’s development paradigm, models, lan-
guage, and components to the specific needs of that domain
only, therefore creating a domain-specific mashup tool .

Domain-specific development instruments are tradition-
ally the object of domain-specific modeling (DSM) [2] and
domain-specific languages (DSLs) [4], yet they typically tar-
get developers, with only few exceptions. Costabile et al. [1],
for instance, successfully implemented a DSM-based tool en-
abling end user development in the context of a specific com-
pany and technological framework. Given the huge techno-
logical diversity on the Web, however, mashup tools are still
too complex, and non-programmers are not able to manip-
ulate the provided compositional elements [5] (e.g., Yahoo!
Pipes comes with web services, RSS feeds, regular expres-
sions, and the like). Web service composition approaches
like BPEL are completely out of reach.

In this poster, we describe a methodology for the devel-
opment of domain-specific mashup tools, defining the nec-
essary concepts and design artifacts. The methodology tar-
gets expert developers, who implement mashup tools. We
show how we used the methodology to implement a mashup

platform for research evaluation. The platform targets do-
main experts (e.g., scientists). Finally, we report on our
user study , which confirms the viability of the developed
platform and of the respective development methodology.

2. METHODOLOGY
Reverse-engineering our experience with the implementa-

tion of the mashup platform described in the next section,
developing a domain-specific mashup platform requires:

1. Definition of a domain concept model (CM) to ex-
press domain data and relationships, which allow the
mashup platform to understand what kind of data ob-

jects it must support. This is different from generic
mashup platforms, which provide support for generic
data formats, not specific objects.

2. Identification of a genericmashup meta-model (MM)
that suits the composition needs of the domain. A vari-
ety of different mashup approaches, i.e., meta-models,
have emerged over the last years, (e.g., data, user in-
terface and process mashups).



3. Definition of a domain-specific mashup meta-model .
Given a generic MM, the next step is understanding
how to inject the domain into it so that all features
of the domain can be communicated to the developer.
We approach this by specifying and developing:

A domain process model (PM) that expresses class-
es of domain activities and, possibly, ready processes
(which we can map to reusable components of the plat-
form). Domain activities and processes represent the
dynamic aspect of the domain. They operate on and
manipulate the domain concepts.

A domain syntax that provides each concept in the
domain-specific mashup meta-model (the union of MM
and PM) with an own symbol that conveys the respec-
tive functionality to domain experts.

A set of instances of domain-specific components.
This is the step in which the reusable domain-knowledge
is encoded in the form of components in order to enable
domain experts to mash it up into new applications.

4. Implementation of the domain-specific mashup tool
(DMT) whose expressive power is that of the domain-
specific mashup meta-model.

3. THE RESEVAL MASH TOOL
ResEval Mash [3] is a mashup platform (a DMT) for re-

search evaluation, i.e., for the assessment of the productivity
or quality of researchers, teams, institutions, journals, and
the like. The platform is specifically tailored to the needs of
sourcing data about scientific publications and researchers
from the Web, aggregating them, computing metrics (also
complex and ad-hoc ones), and visualizing them. ResEval
Mash is a hosted mashup platform with a client-side editor
and runtime engine running inside a common web browser.

Developing ResEval Mash required addressing the specific
requirements coming from the research evaluation domain.
The first step to characterize this domain was the definition
of a suitable domain concept model (CM). Research evalua-
tion deals with publications, researchers, conferences, jour-
nals, metrics (e.g., h-index or citation counts), and so on.
We encoded a respective CM in a suitable XML schema.

Next, composing the above concepts into a new, complex
evaluation logic in essence means processing data (next to vi-
sualizing the output graphically). As generic mashup meta-

model we therefore chose a data flow based meta-model,
which focuses the attention of the user to the passing of data
(e.g., publications) from one computing step to another.

Turning this meta-model into a domain-specific mashup

meta-model then required selecting a set of abstract domain
activities, i.e., defining the domain process model. Here
we have identified data source extraction activities (e.g.,
for Google Scholar or Scopus), metric computation activi-
ties (e.g., h-index, g-index), aggregation and filtering activ-
ities, and finally visualization activities (e.g., UI widgets).
After that, we implemented a set of instances of domain-

specific components for the identified domain activities. For
instance, we developed a Google Scholar and a Microsoft
Academic data component, a h-index component, a cita-
tion count component, a filter component, a bar chart com-
ponent for the visualization of metrics, and others. We
then equipped these components with a domain syntax that
clearly distinguished between data sources, metrics, filters

Figure 1: ResEval Mash in action

and visualization components. Figure 1 shows an example
mashup in ResEval Mash.

4. EVALUATION AND LESSON LEARNED
We have performed a user study of ResEval Mash with

10 users (5 with and 5 without IT skills and with differ-
ent domain expertise). Participants were asked to fill in a
questionnaire about their computing and research evalua-
tion skills before the test, to watch a video tutorial about
ResEval Mash, and to use the tool. This interaction was
filmed, as was the interview that followed task completion.
The results of the user study show that end users indeed
feel comfortable in a mashup environment that resembles
the domain they are acquainted with. The intuitiveness of
the used components, which represent well-known domain
concepts and actions, prevails over the lack of composition
knowledge the users (the domain experts) may have and
help them to acquire the necessary composition skills step
by step by simply “playing” with ResEval Mash.

With ResEval Mash, we constrain the mashup language to
a single domain and the mashup components to the domain’s
concept model. While this might be an additional burden
on the component developer, it allows us to shield the user
from one of the most complex aspects of mashups, i.e., data
mappings. Users only need to think about the data flow,
then the components know themselves which data to use.
This is a very simple, but powerful simplification.

5. REFERENCES
[1] M. F. Costabile, D. Fogli, G. Fresta, P. Mussio, and

A. Piccinno. Software environments for end-user
development and tailoring. PsychNology Journal, pages
99–122, 2004.

[2] R. France and B. Rumpe. Domain specific modeling.
Software and Systems Modeling, 4:1–3, 2005.

[3] M. Imran, F. Kling, S. Soi, F. Daniel, F. Casati, and
M. Marchese. ResEval Mash: Advanced Research
Evaluation for Domain Experts. In WWW’12, 2012.

[4] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, 2005.

[5] A. Namoun, T. Nestler, and A. De Angeli. Service
Composition for Non Programmers: Prospects,
Problems, and Design Recommendations. In
Proceedings of ECOWS, pages 123–130. IEEE, 2010.


