
Spotlight
Editors: Juliana Freire • juliana@cs.utah.edu

Gustavo Rossi • gustavo@lif ia.info.unlp.edu.ar

2 	 Published by the IEEE Computer Society	 1089-7801/12/$31.00 © 2012 IEEE� IEEE INTERNET COMPUTING

W eb mashups integrate data, application
logic, and parts of UIs sourced from the
Web to create new, composite applications.1

A typical example is the housingmaps.com
application, which integrates housing offers
from craigslist.com with a Google map. Although
mashups are often coded manually, so-called
mashup tools or platforms aim at development
paradigms that don’t require programming skills
and, hence, target end users. However, the scope
of the instruments conceived so far is both broad
and technology-centric, which limits these tools’
ability to cater to domain-specific features and
needs when it comes to developing concrete
applications.

For instance, interconnecting people, possi-
bly via different channels such as voice, video,
or IM, in both fixed and mobile settings is still
a difficult and time-consuming endeavor —
if it’s feasible at all. In fact, the peculiarities
of the telecommunications (telco) domain,
which specifically focuses on transmitting data
to enable communication and collaboration
among people, haven’t percolated into exist-
ing mashup tools. Features such as multidevice
deployment, audio and video (A/V) stream-
ing, distributed session management, and live

collaboration aren’t supported in an integrated
fashion and are thus unavailable to the gen-
eral public. The same holds for quality of ser-
vice (QoS), the key nonfunctional requirement
in telco.

A primary reason for this weak support for
telco features in mashups is a general lack of
understanding about what they are and how
they can be developed. To foster research
in this area and advance current mashups
toward the telco domain, we review the state
of the art in telco services, derive a reference
architecture for mashup platforms, and com-
pare it with existing platforms. We also identify
challenges and open research questions that are
specific to the telco domain.

Scenario and Challenges
To better understand what a telco mashup might
look like, consider the following application sce-
nario. Several consultants from a multinational
firm are discussing the technical architecture for
a project proposal. They use a corporate collab-
orative environment consisting of a multichan-
nel Web application and a shared whiteboard.
All participants connect to the application via
different clients: Marco via a smartphone using

From Mashups to Telco
Mashups: A Survey

Hendrik Gebhardt and Martin Gaedke • Chemnitz University of Technology

Florian Daniel, Stefano Soi, and Fabio Casati • University of Trento

Carlos A. Iglesias • Universidad Politécnica de Madrid

Scott Wilson • University of Bolton

Given their increasing popularity and novel requirements and characteristics,

telco mashups deserve an analysis that goes beyond what’s available for mash-

ups in general. Here, the authors cluster telco services into different types,

analyze their features, derive a telco mashup reference architecture, and survey

how well existing mashup tools can respond to these mashups’ novel needs.

FPO

IC-16-03-Spotlight.indd 2 2/27/12 3:23 PM

From Mashups to Telco Mashups: A Survey

MAY/JUNE 2012� 3

a mobile Web browser, Steve using a
desktop Web browser, Jürgen with a
tablet using a mobile Web browser,
and Maria through a traditional
mobile phone using the phone’s
built-in capabilities.

The first three consultants use
Web-based IM, while the fourth uses
SMS messaging. The collaborative
environment provides a telco mashup
that combines these two communi-
cation channels with the whiteboard.
After a while, the consultants decide
to switch to voice, using a facility of
the collaborative environment based
on a dedicated voice-over-IP (VoIP)
service. Maria can either dial in to
the ongoing session, or the applica-
tion calls her on a known number.
Because Maria can’t draw with her
phone, she sketches her ideas on
paper and sends a photo taken with
her phone’s built-in camera via MMS
to the telco mashup, which renders it
to the other consultants.

This scenario is rather complex,
and supporting it requires a telco-
ready platform. Devising such a
platform is nontrivial and requires
a thorough understanding of both
telco services and APIs, and telco
mashups.

Telco Services
and Device APIs
In our example scenario, some fea-
tures of the collaborative environ-
ment must interact with remote
sof tware ser v ices (f unct iona l-
ities accessed via the Internet using
protocol-based message exchanges)
that provide telco support (such as
the VoIP service). Others require
local device capabilities (for exam-
ple, the phone’s camera). We call the
former telco services (software ser-
vices that provide communication
and collaboration support) and the
latter device APIs.

Telco Capabilities
To enable user-generated, value-adding
services, telco companies such as

Orange (www.orangepartner.com/
site/enuk/access_orange_apis/p_
access.jsp), Telefonica (https://bluevia.
com/en/), or Deutsche Telekom (www.
developergarden.com/apis/) invest in
service delivery platforms (SDPs) that
expose network capabilities to third
parties. At these platforms’ core is
the telecommunication application
server, which is based on technolo-
gies such as Session Initiation Pro-
tocol (SIP) servlets, JAIN SLEE (the
Java APIs for Integrated Networks
Service Logic Execution Environ-
ment), Parlay-X, or the IP Multimedia
Subsystem (IMS). Although these
telco services are evolving slowly,
nontelco companies such as Google,
Yahoo, Twilio, and Tropo already
provide similar services for manag-
ing calls, messaging, or presence.

We distinguish three types of
telco services, depending on the net-
works used and their purpose:

•	 Internet telco services operate
exclusively on the Internet, using
it as communication infrastructure.
Examples include VoIP and IM.

•	 Converged services operate across
the Internet and operator net-
works, mediating between differ-
ent networks and communication
protocols. A VoIP call to a mobile
phone or fixed-line phone would
be a converged service.

•	 Signaling services provide access
to a network operator’s signal-
ing infrastructure. Notifying a
mobile phone about an incoming
call or negotiating QoS param-
eters are examples of signaling
operations.

We also determined three dimen-
sions that we can use to analyze
telco services. Consider a developer
who wants to integrate telco ser-
vices or APIs into his own mashup.
The developer must first understand
what a given service or API actually
provides — that is, what communi-
cation paradigm it supports. After

identifying a candidate service, the
developer will typically want to
know how to use — that is, interact
with — it in the mashup; we call this
the service’s interaction paradigm.
Finally, to further discriminate ser-
vices based on nonfunctional prop-
erties, the developer must know at
what cost or service levels the can-
didate service is delivered, deter-
mined via service-level agreements
(SLAs).

The communication paradigm
describes the direction of the com-
munication channel and the number
of parties involved. Unlike with com-
monly used Representational State
Transfer (REST) APIs, cardinality
plays a decisive role in communica-
tion with a telco service. Whether we
can use one-to-one or one-to-many
communication depends on the ser-
vice itself. In both cases, one service
is the sender, but there are a differ-
ent number of receivers. Another
important property of telco services
is their synchronicity. Whereas voice
and video communications need
synchronous communication (par-
ticipants’ copresence is required),
messaging is asynchronous (partici-
pants can write and read messages at
different times).

The interaction paradigm looks at
how telco mashups handle the inter-
action with a service or API. A sub-
dimension, binding, describes how
a telco mashup transfers content —
that is, voice and video services are
based on streaming data because
delays in synchronous communica-
tions are undesirable or even prohib-
ited (as with real-time streaming).
Another subdimension is internal
state management, which instanti-
ates and manages resources and com-
munication channels for services.
For instance, establishing a Global
System for Mobile Communications
(GSM) phone call implies acting first
on a control channel to obtain a
separate stream for the actual com-
munication. In telco mashups, where

IC-16-03-Spotlight.indd 3 2/27/12 3:23 PM

Spotlight

4	 www.computer.org/internet/� IEEE INTERNET COMPUTING

we might have multiple parallel
communication connections open
simultaneously, this demands suit-
able stream state management. All
these aspects differ from common
Web mashups that call, for instance,
REST APIs, which are stateless.

Finally, SLAs look at QoS, cost,
security, and related aspects. Com-
mon Web mashups benefit from the
wide variety of free services avail-
able on the Web. In the telco domain,
however, services are potentially
subject to charges from network
operators, based on different options
(pay-per-use, subscription model,
prepaid/postpaid billing models, dis-
count plans, and so on). Thus, telco
services are usually executed in a
controlled environment where QoS,
security, and billing are guaranteed.

Device Capabilities
Modern mobile phones have evolved
into full-fledged computing devices
that can both run mashups inside
mobile browsers and enable them
to leverage advanced device capa-
bilities, such as a built-in camera or
SMS texting. Telco mashups should
thus be able to process incoming
telco events (for example, phone
calls or SMS messages) and allow
telco mashups to access phone
facilities (initiate phone calls or
consult the agenda, for instance).
Telco mashups can utilize these fea-
tures via device APIs, which enable
access to embedded cameras or web-
cams, location services, SMS and
MMS interfaces, and the like. Cross-
device standards, such as the W3C’s
Device APIs (www.w3.org/2009/
dap/) or Widget Handset APIs from
the Wholesale Applications Com-
munity (WAC; www.wacapps.net),
provide APIs accessible from within
regular Web applications and offer
capabilit ies including position,
accelerometer, messaging, system
information, camera, and micro-
phone. For example, an applica-
tion can capture an image with the

following JavaScript code using
WAC standards:

camera.captureImage(onCapture
ImageSuccess,onCaptureImage
Error,{destinationFilename:
"images/a.jpg", highRes:true});

Or, the application could capture the
same image in HTML 5 using the W3C
DAP Media Capture specification:

<input type="file" accept=
"image/*" id="capture">

By themselves, device APIs offer
nothing especially new. The chal-
lenge for telco mashups is to seam-
lessly merge device APIs and telco
services with Web mashups in a way
that isn’t tied to any specific phone
model, operating system, or service
operator.

A Telco-Specific
Mashup Platform
We define a telco mashup as a Web
mashup that, in addition to optional
data, application logic, and UIs, also
integrates telco services or device
APIs to support communication and
collaboration among multiple users
(as in our reference scenario) or
provide them with individual telco
features (such as an advanced GPS
navigation mashup).

Our example scenario poses some
novel requirements that existing
mashup platforms don’t yet support.
For this scenario, a telco mashup must

•	 manage streaming media involv-
ing multiple users;

•	 integrate device APIs running
inside client devices;

•	 manage QoS and billing;
•	 provide multichannel access to

support different device types;
•	 provide multimodal access to

support different interaction par-
adigms; and

•	 provide multiuser access to enable
communication and collaboration.

Streaming A/V conferencing is
different from just streaming a video
or audio file from a Web server. In
the latter case, if the stream breaks,
a user can simply start it again; no
special support is required from
the Web server. However, during
our example phone conversation, if
any participant’s stream breaks, the
platform must be able to reconnect
that user to the ongoing live confer-
ence by tracking who is involved in
which conversation. So, if a telco
mashup uses multiple collaborative
streams, it must be able to manage
each individual stream’s state at the
client side. This might require suit-
able browser extensions, client-side
state management logic, or server-
side logic, depending on each spe-
cific telco mashup’s nature. Using
device APIs doesn’t directly impact
the platform logic; however, if the
telco mashup uses device APIs for
communication among participants,
the platform must provide for the
necessary client–server data com-
munication channel (for instance, to
broadcast Maria’s photo). Both telco
services (such as streaming ser-
vices) and device APIs might require
monitoring and tracking QoS. More
importantly, using converged and
signaling services inside a mashup
requires that the platform as runtime
environment manages billing infor-
mation, taking into account differ-
ent contract options.

Multichannel access requires the
platform to deliver its mashups via
different communication networks
and protocols, such as the Inter-
net or conventional telco networks.
Multimodal access requires support
for different interaction paradigms,
such as voice for Maria and tradi-
tional hypermedia for Jürgen, Marco,
and Steve. Multiuser access requires
not only proper user identity man-
agement and authentication but also
the ability for multiple users to navi-
gate (co-browse) the same mashup —
that is, to work on the same mashup

IC-16-03-Spotlight.indd 4 2/27/12 3:23 PM

From Mashups to Telco Mashups: A Survey

MAY/JUNE 2012� 5

instance (to collaboratively draw the
architecture picture, for instance).2
This is different from providing each
user with an independent mashup
instance, which is customary in today’s
mashup platforms.

Understanding these subtleties
is paramount to developing a telco
mashup platform that can adequately
support real-life telco mashup sce-
narios. Figure 1 shows our reference
architecture for telco mashups.

Our architecture shows how to
deliver telco mashups via multiple
channels. Maria’s phone uses a tra-
ditional operator network (such as
GSM), while Steve’s PC, Marco’s
smartphone, and Jürgen’s tablet use
the Internet. To allow mashups to
execute the necessary converged and
signaling services and to mediate

between the Internet and the opera-
tor networks, the platform needs
either a network gateway (typically
provided by an operator or telco ser-
vice provider, as described in the
“Gateways in Telco Services” side-
bar) or a dedicated telco application
server (such as that available from
www.opencloud.com).

The communications manager
can provide multimodal access, allow-
ing Maria to instantiate the mashup
from her phone, even if Marco,
Steve, or Jürgen aren’t present. As
in phone conferences, multiuser
access requires a shared resource
that everybody can connect to and
a respective identifier. In the archi-
tecture, we represent this resource
via the mashup instances managed
by the mashup instance pool, which

maintains the necessary correlation
and life-cycle information for the
mashup UIs running inside the cli-
ent devices.

To assist client devices in manag-
ing streams (both incoming and out-
going calls and Web-based streams),
a channel table correlates users with
their streams and channels and the
respective mashup instances. The
channel table also lets users book
a telephone channel for A/V con-
ferences (scheduling) and route
asynchronous messages. With the
channel table’s help, the communi-
cations manager knows that Maria’s
photo is to be routed to Steve, Marco,
and Jürgen and not to other platform
users. Using device APIs affects the
client-side runtime environments’
capabilities more than those of the

Figure 1. Telco mashup reference runtime architecture. UI components are represented as rectangles; services without
UIs appear as cogwheels.

Telco mashup
platform Server-side runtime environment

Mashup service
container

Web client

UI viewer

Mobile client

Web browser runtime
environment

Mashup life-cycle manager Communications
manager

Network
gateway

Mobile runtime
environment

Internet

Operator
network

Telco protocols

Channel table

Charging
manager

QoS
manager

Dial-in
client

Converged services

Internet telco services

Signaling
services

Signaling services

Converged services

Internet telco services

Mashup
repository

User pro�le
repository

Device APIs

Device APIs

UI viewer

Mashup instance pool

M1 M5
M3 M2

M4

Telco
protocols

Telco
protocols

Web protocols

Telco
protocols

Web protocols

Web protocols

Web protocols
Web protocols

Web protocols

Web protocols

Web protocols

Web
protocols

IC-16-03-Spotlight.indd 5 2/27/12 3:23 PM

Spotlight

6	 www.computer.org/internet/� IEEE INTERNET COMPUTING

server side. These client-side com-
ponents must be able to provide
access to device capabilities in a
way that’s compatible with standard
Web technologies — for example, by
using Web browsers that implement
the respective W3C or WAC APIs
or via suitable browser plug-ins.

Communication among these APIs
and the server-side platform then
occurs via standard Web protocols. A
dedicated QoS manager and a charg-
ing manager handle QoS and billing,
respectively.

In addition to these telco-specific
features, a telco mashup platform

will typically be able to host services
(third-party and its own components)
in its mashup service container
and ready mashups in a dedicated
mashup repository (in either exe-
cutable or interpretable format).
For instance, the repository might
cater to the voice call service used

Gateways in Telco Services

Telco services such as converged and signaling services are
possible thanks to communication networks that actually

predate the Internet; these services constitute the Internet’s
backbone and evolved independently. Fixed access, for instance,
is provided via the Public Switched Telephone Network (PSTN,
or POTS, for Plain Old Telephony System), and mobile access
via the Universal Mobile Telecommunications System (UMTS),
General Packet Radio Service (GPRS), and Global System for
Mobile Communications (GSM) networks.

Each network uses its own protocols (such as the GSM
Mobile Application Protocol) and signaling conventions (for
example, Signaling System No. 7 [SS7]), which are differ-
ent from the Internet’s TCP/IP stack. Consequently, we can’t
implement a Web-based telco service that directly interoper-
ates, for instance, with a GSM voice call. Implementing such a
service requires bridging between the two network types and
mediating between their respective protocols. Telco operators
provide this functionality through network gateways, which are
reachable from the Internet via standard Web protocols such
as REST/HTTP or SOAP, and which expose some of the opera-
tor network’s capabilities (such as the GSM voice call).

Specifically, network gateways allow access to telephony
infrastructure, such as the infrastructure in Figure A. A tele-
phony network essentially handles two pieces of information1:
the content that’s transmitted (such as voice or data) and con-
trol signals that instruct the network how to transmit content
and allocate the needed resources. In the past, control signals
used in-band signaling techniques — that is, signals were trans-
mitted together with voice or data over the same channel.
Due to its intrinsic bandwidth efficiency problems, this tech-
nique was soon replaced by out-of-band control channels and
dedicated signaling protocols. SS7 is the most popular out-of-
band signaling protocol. As the figure illustrates, an infrastruc-
ture can have circuit-switched technologies (such as PSTN or
GSM) and packet-switched technologies (such as UMTS Packet
Switched Data [PSD] or voice over IP). Circuit-switched tech-
nologies establish a dedicated circuit path (via suitable SS7 con-
trol signals) before content is transmitted. In package-switched
technologies, content is fragmented into packages that can
be transmitted over different paths and reassembled at the des-
tination. Package-switched technologies, therefore, require

establishing a session between the caller and the receiver, usu-
ally via the Session Instantiation Protocol (SIP). Media gateways
provide for converting between circuit-switched and package-
switched technologies, while signaling gateways do the same for
control signals.

Given their crucial role in bridging the Web and telco
worlds, network gateways have recently been the subject of
several standardization activities, such as Parlay-X,2 OneAPI
(www.gsmworld.com/oneapi), and Wholesale Applications
Community standards (www.wacapps.net). To further reduce
the complexity and costs of operating heterogeneous net-
works, next-generation networks, such as the IP Multimedia
Subsystem (IMS),3 propose using just one set of protocols for
all kinds of networks — that is, Internet protocols.

References
1.	 R. Bates and D. Gregory, Voice & Data Communications Handbook, 5th ed.,

McGraw-Hill Communication Series, 2007.

2.	 Parlay X Web Services, Part 1: Common, tech. specification 3GPP TS 29.199-1,

3rd Generation Partnership Project, Sept. 2004; www.3gpp.org/ftp/tsg_cn/

tsg_cn/TSGN_25/Docs/PDF/NP-040360.pdf.

3.	 M. Poikselka, G. Mayer, and H. Khartabil, The IMS Multimedia Concepts and

Services, 3rd ed., Wiley, 2008.

Figure A. The typical topology of today’s telecommunications
infrastructure. Solid lines represent content flow; dashed lines
represent control signals.

PSTN, GSM,
UMTS CSD

SS7
UMTS PSD

IMS

Media
gateway

Signaling
gateway

Circuit
media

Packet
media

Packet
media

Packet
media

SIP

IP signaling
(SIP, H323, and so on)

Network
gateway

Network
gateway

SOAP,
REST,
http

SOAP,
REST, http

SS7 signaling

Internet

IP signaling
(SIP, H323, and so on)

IC-16-03-Spotlight.indd 6 2/27/12 3:23 PM

From Mashups to Telco Mashups: A Survey

MAY/JUNE 2012� 7

in our scenario, whereas the shared
whiteboard could be sourced from
the Internet. The mashup life-cycle
manager (part of the server-side run-
time environment) must instantiate a
mashup from the mashup repository
on request, causing the instantiation
of one or more client-side runtime
environments that host the actual
mashup UI. These runtime environ-
ments might be native mobile appli-
cations, regular Web applications, or
JavaScript libraries running inside
the Web browser.

Current Mashup
Platform Analysis
To determine which of the aforemen-
tioned requirements are already sup-
ported by state-of-the-art mashup
platforms, we analyzed Yahoo Pipes
(http://pipes.yahoo.com), Intel Mash
Maker (http://software.intel.com/en-
us/articles/intel-mash-maker-mash-
ups-for-the-masses/), JackBe Presto
(www.jackbe.com), IBM Mashup Center
(http://www-01.ibm.com/software/
info/mashup-center/), WSO2 Mashup
Server (http://wso2.com/products/
mashup-server/), MyCocktail,3 Serv-
Face,4 Karma,5 Cruise,6 MashArt,7
Mashlight,8 Opuce,9 Spice,10 and
SOA4All.11

None of these platforms provides
support for multiuser mashups. This
shortcoming also impacts other impor-
tant telco mashup requirements —
that is, the ability to manage stream-
ing media involving multiple users.
Streaming media management in
single-user mashup tools is rela-
tively simple and supported by most
available tools (such as embedded
YouTube videos). However, the lack
of support for multiuser mashups
makes multiuser streaming manage-
ment impossible. Regarding access
to mashup instances via different
channels — that is, the Internet and
operator networks — only Opuce and
Spice support bidirectional network
integration (see the communications
manager in Figure 1). Opuce uses a

JAIN SLEE server to integrate telco
protocols; however, the preferred
solution so far in the majority of plat-
forms we analyzed is to delegate all
interactions with operator networks
to dedicated converged services. The
ability to interact with a system via
different channels also enables new
multimodal interaction. Instantiating
a mashup only from a voice device
running in an operator network isn’t
yet possible; non-Web clients can be
included only in a running instance
of a mashup by, for example, calling
them from the mashup. Addition-
ally, dealing with multiuser mashups
requires that the platform manage
bidirectional channel integration (for
example, to broadcast an incoming
MMS or voice call stream to multiple
mashup participants), which no cur-
rent platform supports. Only Opuce
and Spice support integration with
operator networks, but they offer
very limited support for interaction
paradigms other than classic hyper-
media and thus aren’t suitable for
regular phones.

Another requirement we discussed
is integrating device APIs. Most of
the platforms we analyzed can gener-
ate Web-based mashup applications;
some also let users create native
device apps (such as Mashlight). So,
although they could exploit stan-
dard interfaces (such as W3C or WAC
interfaces) to access device APIs, most
don’t yet support such APIs.

Finally, another important require-
ment for telco mashups is managing
QoS and billing. Only telco-specific
tools partly address this aspect. Opuce
adds annotations with pricing and QoS
parameters to service descriptors, yet
so far these annotations aren’t used
at runtime. Spice comes with a dedi-
cated component for SLA management
and billing (based on IMS and the 3rd
Generation Partnership Project).

Challenges and Outlook
Our aim here was to approach the telco
domain from an Internet perspective.

We specifically looked at how Web
mashups can integrate with telco
network and device capabilities. Our
analysis shows that a minimum level
of telco support already exists in
some mashup platforms, yet devel-
opers must still implement advanced
telco features manually. We’ve iden-
tified several research challenges
that seem crucial for telco mashups
to be successful.

First, telco service providers must
develop Web-ready streaming and
signaling services that are easy to
use and manage. For instance, set-
ting up a video conference using
the public Skype API still requires
a programmer to master the Skype
telephony protocol, which is com-
plex and vendor-specific. Exposing
such a complex API to a mashup
environment is like not exposing it
at all. Although some authors have
proposed a f ramework based on
state machines12 or communication
hyperlinks,13 a shared telco service
model doesn’t yet exist.

Second, browser vendors must
implement full support for device
APIs. The W3C and WAC proposals
for interfacing device capabilities are
reasonable and easy to use. However,
support for them even inside the lat-
est browser versions is still weak and
partly browser-specific, which hin-
ders adoption.

Third, network operators and the
Web community must agree on stan-
dard, cross-operator APIs for nego-
tiating QoS and for billing, as well
as respective monitoring and charg-
ing infrastructures. As of today, the
market is fragmented, each operator
adopts its own policies and technol-
ogies, QoS isn’t adequately tracked,
and each telco service requires its
own payment logic.

Related to the previous point, the
two communities must also develop
cross-network user identification and
authentication protocols to enable
seamless network integration. Suit-
able single sign-on and federation

IC-16-03-Spotlight.indd 7 2/27/12 3:23 PM

Spotlight

8	 www.computer.org/internet/� IEEE INTERNET COMPUTING

protocol s se em of pa r amount
importance.

Mashups are also required that
can manage intermittent connectiv-
ity. Especially in the mobile Web,
network disconnection is the rule,
not the exception. Yet, we typically
must still deal with services that
can’t work without the Internet, and
we don’t have robust solutions to
handle connectivity problems at the
application level.

Finally, we need to be able to design
mashups that are adaptive — that is,
that can autonomously fall back to
lower-quality services if higher-
quality ones aren’t available, or that
can switch to a different service if
we cross a border and operate while
roaming internationally. Telco ser-
vices are typically country-specific,
and using them while roaming could
result in huge costs.

L uckily, some of these open chal-
lenges are already on the research

agenda of academia and industry,
and most network operators open
APIs to the public. For instance, the
GSM Association’s OneAPI initiative
(www.gsmworld.com/oneapi) aims to
devise cross-operator, lightweight
Web APIs with typical telco network
capabilities. The Web-telco conver-
gence so far moves mostly from tra-
ditional telco networks toward the
Web, which means that the number
and variety of telco services avail-
able on the Web is destined to grow
significantly. This, on the other hand,
requires the Web community to bet-
ter understand, master, and suitably
interface with the telco world.�

Acknowledgments
This work was supported by funds from the

European Commission (project Omelette, con-

tract no. 257635).

References
1.	 J. Yu et al., “Understanding Mashup

Development,” IEEE Internet Computing,

vol. 12, no. 5, 2008, pp. 44–52.

2.	 F. Daniel et al., “Toward Process Mashups:

Key Ingredients and Open Research Chal-

lenges,” Proc. 3rd and 4th Int’l Workshop

Web APIs and Services Mashups (Mash-

ups10), ACM Press, 2010; http://doi.acm.

org/10.1145/1944999.1945008.

3.	 C.A. Iglesias et al., “Combining Domain-

Driven Design and Mashups for Service

Development,” Service Eng., Springer,

2010, p. 71.

4.	 M. Feldmann et al., “Overview of

an End-User-Enabled Model-Driven

Development Approach for Interac-

tive Applications Based on Annotated

Services,” Proc. 4th Workshop Emerging

Web Services Technology (WEWST 09),

ACM Press, 2009; http://doi.acm.org/

10.1145/1645406.1645410.

5.	 R. Tuchinda, P. Szekely, and C.A. Knob-

lock, “Building Mashups by Example,”

Proc. 13th Int’l Conf. Intelligent User Inter-

faces (IUI 08), ACM Press, 2008; http://

doi.acm.org/10.1145/1378773.1378792.

6.	 S. Pietschmann et al., “CRUISe: Compo-

sition of Rich User Interface Services,”

Proc. 9th Int’l Conf. Web Eng. (ICWE 09),

LNCS 5648, Springer, 2009, pp. 473–476.

7.	 F. Daniel et al., “Hosted Universal

Composition: Models, Languages, and

Infrastructure in mashArt,” Proc. 28th

Int’l Conf. Conceptual Modeling (ER 09),

Springer, 2009; http://dx.doi.org/10.1007/

978-3-642-04840-1_32.

8.	 L. Baresi and S. Guinea, “Consumer

Mashups with Mashlight,” Proc. Service-

Wave (ServiceWave 2010), Springer, 2010,

pp. 112–123.

9.	 J. Sienel et al., “OPUCE: A Telco-Driven

Service Mashup Approach,” Bell Labs

Tech. J., vol. 14, no. 1, 2009, pp. 203–218.

10.	 O. Droegehorn et al., “Professional and

End-User-Driven Service Creation in the

SPICE Platform,” Proc. 2008 Int’l Symp.

World of Wireless, Mobile, and Multimedia

Networks (WoWMoM 08), IEEE Press,

2008, pp. 1–8; http://dx.doi.org/10.1109/

WOWMOM.2008.4594818.

11.	 M. Zuccalà, “SOA4All in Action: Enabling

a Web of Billions of Services,” Proc. Ser-

viceWave (ServiceWave 10), Springer,

pp. 227–228.

12.	 R. Arlein et al., “Telco Meets the Web: Pro-

gramming Shared-Experience Services,”

Bell Labs Tech. J., vol. 14, no. 3, 2009,

pp. 167–185.

13.	V. Verdot, G. Burnside, and N. Bouché,

“An Adaptable and Personalized Web

Telecommunication Model,” Bell Labs

Tech. J., vol. 16, no. 1, 2011, pp. 3–17.

Hendrik Gebhardt is a PhD student in the

Distributed and Self-Organizing Sys-

tems Group at the Chemnitz University of

Technology. His research interests include

Web engineering, social networks, and

security in these areas. Hendrik has an

MSc in data and Web engineering from

the Chemnitz University of Technol-

ogy. Contact him at hendrik.gebhardt@

informatik.tu-chemnitz.de.

Martin Gaedke is a full professor in the

Depar tment of Computer Science at

Chemnitz University of Technology. His

research interests include Web engineer-

ing, trustworthy ICT, Internet of services,

distributed information systems, mash-

ups, self-organization, self-management,

and massively distributed collaboration.

Contact him at gaedke@informatik.

tu-chemnitz.de; http://vsr.informatik.

tu-chemnitz.de/people/gaedke.

Florian Daniel is a postdoctoral researcher at

the University of Trento, Italy. His main

research interests are Web mashups, Web

engineering, service-oriented comput-

ing, and business process management.

Daniel has a PhD in information tech-

nology from Politecnico di Milano, Italy.

Contact him at daniel@disi.unitn.it or

www.floriandaniel.it.

Stefano Soi is a PhD candidate in information

and communication technology at the

University of Trento, Italy. His research

interests include Web technologies, light-

weight composition on the Web, mash-

ups, and end-user development. Soi has

an MSc in computer science from the

University of Trento. Contact him at soi@

disi.unitn.it.

Fabio Casati is technical lead for the research

program on business process intelligence

at Hewlett-Packard USA. His interests are

IC-16-03-Spotlight.indd 8 2/27/12 3:23 PM

From Mashups to Telco Mashups: A Survey

MAY/JUNE 2012� 9

in service-oriented architectures, busi-

ness process management, knowledge

dissemination, and social informatics for

wellbeing. Casati is coauthor of a book on

Web services, a member of the editorial

board of ACM Transactions on the Web

(TWEB), and a member of the steering

committee of the international confer-

ences on Service-Oriented Comput-

ing and Business Process Management.

Contact him at casati@disi.unitn.it.

Carlos A. Iglesias is an associate professor at

the Universidad Politécnica de Madrid,

Spain. His research interests are in mul-

tiagent systems, service engineering, and

Web engineering. Iglesias has a PhD in

telecommunications engineering from

the Universidad Politécnica de Madrid.

Contact him at cif@gsi.dit.upm.es; http://

www.gsi.dit.upm.es.

Scott Wilson is a senior researcher at the Uni-

versity of Bolton, UK. His main research

interests are in interoperability. Wilson

is on the editorial board of Campus-Wide

Information Systems and has contributed

to several standards and specifications

published by the W3C, CEN, IMS, and

BSI. He’s on the board of the Open Web

Foundation, a committer at the Apache

Software Foundation, and a member

of the W3C Web Applications Work-

ing Group. Contact him at scott.bradley.

wilson@gmail.com.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-16-03-Spotlight.indd 9 2/27/12 3:23 PM

