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Abstract—This paper focuses on two of the key challenges a
developer encounters when reusing smart contracts: finding ac-
tionable information about existing smart contracts (descriptors)
and writing the necessary integration logic to invoke selected
contracts and implement missing functions. As for the former
issue, the paper proposes a smart contract description format that
allows the developer to search for publicly available contracts,
understand which features a contract exposes and how to invoke
them, according to a service-oriented approach. For the latter,
the paper implements a simple, model-driven development envi-
ronment consisting in a visual programming editor that provides
a set of modeling constructs encoding specific, reuse-oriented
code patterns. The approach is implemented and demonstrated
in the context of the blockchain platform Ethereum and its
programming language Solidity. The results obtained show that
the proposed approach can be beneficial in the development of
composite smart contracts and generic blockchain applications.

I. INTRODUCTION

A blockchain is a shared, distributed ledger, that is, a log
of transactions that provides for persistency and verifiability
of transactions [1]. Transactions are cryptographically signed
instructions constructed by a user of the blockchain [2], for
example the transfer of cryptocurrency from one account to
another. Smart contracts1 [3] enable the blockchain to perform
computations, for example to decide whether to release a
given amount of cryptocurrency upon the satisfaction of a
condition agreed on by two partners. If we move from one
smart contract to multiple collaborating smart contracts, we
turn the blockchain into a distributed computing platform [4].
As this was not the original intention of blockchain, we are
however far from a mature support for distributed computing.

In this paper, we look at the problem of distributed com-
puting in blockchains from a service-oriented perspective [5],
in which smart contracts act as reusable services that can be
integrated to develop new, value-adding contracts. However,
while smart contracts present significant opportunities and
also a need for reuse and contract interactions [6], some
infrastructural elements that have proven useful in service-
oriented computing do not yet have equivalents in state-of-the-
art blockchain technology. For instance, the technology lacks
(i) abstract descriptors, which allow developers to understand
the functionality of a contract without having to read the actual
code; (ii) a descriptor registry, which allows them to search
for and discover contracts for reuse; and (iii) a dedicated,

1For simplicity, we use “smart contract” and “contract” as synonyms.

reuse-oriented composition paradigm, which provides them
with contract-oriented programming constructs [6].

In service-oriented computing, a service descriptor is a
standardized description of a service, a machine-readable set
of metadata that identifies the endpoints of the service, the
communication protocols, the operations, the message formats,
the server methods, and the usage policies of the service.
That is, it encapsulates all the information that a developer
must know to access and use the service [7]. Typical de-
scription formats are the Web Services Description Language
(WSDL, http://www.w3.org/2002/ws/desc/) or the Web Ap-
plication Description Language (WADL, https://www.w3.org/
Submission/wadl/). Descriptors can be made public for in-
stance via registries following the Universal Description, Dis-
covery and Integration (UDDI, http://www.uddi.org/pubs/uddi-
v3.0.1-20031014.htm) specification, which provides a standard
protocol for publishing and searching for services. The most
prominent standard for the composition of web services is
the Web Services Business Process Execution Language (WS-
BPEL, http://www.oasis-open.org/committees/wsbpel/), which
is also equipped with a variety of graphical editors for visual
service composition.

In absence of similar infrastructure services for smart con-
tracts, reuse in smart contract development remains under-
explored. In addition, implementing correct contracts requires
not only coding skills and proficiency in the programming
languages of the chosen blockchain platform, but also vast
knowledge about the functioning mechanisms of the specific
blockchain network. This makes the creation of smart contracts
complex and error prone. For instance, Atzei et al. [8] show
that already today even simple smart contracts often suffer
from a variety of security vulnerabilities; Nikolić et al. [9]
show that several of the smart contracts deployed on Ethereum
either “lock funds indefinitely, leak them carelessly to arbitrary
users, or can be killed by anyone;” and Singh and Chopra [10]
discuss socio-technical limitations of smart contracts: lack of
control, lack of understanding and lack of social meaning.

With this paper, we aim to lay the foundation for a discus-
sion on service-orientation for smart contracts by proposing:

• a smart contract descriptor model and format for the
abstract description and publication of reusable contracts;

• a prototype of a smart contract registry for the search and
discovery of smart contracts for both human users (Web
user interface) and software agents (RESTful API);



• a visual development environment for the model-driven
development of smart contracts with a special focus on
the integration of smart contracts and on code patterns –
both aiming at easing reuse.

The paper specifically focuses on Ethereum, the most used
blockchain platform for smart contracts, and on Solidity,
Ethereum’s programming language for smart contracts.

Next, we therefore provide some more details on Ethereum
and then refine the goals of our work. Then, we discuss
the description format (Section III) and the metamodel of
the composition environment (Section IV). In Section V we
implement the registry and graphical editor, then we describe
a case study (Section VI). Before closing the paper, we discuss
related works in Section VII.

II. BACKGROUND AND OBJECTIVES

A. Scenario
Let’s consider the following scenario of the insurance sector

inspired by the opportunities outlined by Gatteschi et al. [11].
The goal is to implement a so-called “parametric insurance”
contract, SmartTrainInsurance, which reacts to a triggering
event, i.e., the dissatisfaction of a minimum service level
agreement by a train company. A customer interested in the
insurance pays an extra premium when buying his/her monthly
pass, and, if during the respective month the cumulative delays
of the trains on the chosen route exceed a given limit, a
compensation is automatically transferred to the customer.
Service levels are checked monthly using a trustworthy API
with train timetable information. Once triggered, the smart
contract compensates all insured customers at once.

Railway companies have a punctuality commitment with
their customers: in case of delayed trains, travellers are entitled
to request a compensation. Today, the complexity of claim
procedures often discourages passengers to submit a claim.
This phenomenon is even more bothersome to commuters,
who typically buy seasonal or monthly passes for which the
indemnification process is usually more intricate than for
individual tickets. A smart contract insurance may thus help
lower complexity and automate the indemnification process.

In order to provide the service specified, the smart contract
reuses three externals contracts and one library:

• Ownable, third-party contract inherited to reuse basic
authorization control mechanisms, such as the ones that
restrict access to some functions of the contract to the
owner of the contract only, as well as to make possible
ownership transfer operations;

• Pausable, third-party contract inherited to integrate a
basic emergency stop mechanism that allows the owner
of the contract to pause and unpause calls to critical
functions, such as the registration of new policies;

• usingOraclize, contract inherited to access Oraclize (http:
//www.oraclize.it), an oracle service with access to exter-
nal APIs and string and response processing functions;

• SafeMath, library called to make math operations safe,
e.g., to prevent overflows or underflows with integer
operations.

Ownable, Pausable and SafeMath can be retrieved from the
OpenZeppelin library (https://openzeppelin.org/).

If the insurance contract is hand-coded, the reuse of these
external contracts easily becomes time-consuming and error-
prone. For example, in order to reuse a publicly deployed smart
contract, a developer first of all requires information about the
endpoint, the Ethereum address, of the contract. Then, for the
developer to understand which specific functions of a contract
to invoke or to inherit, he/she needs to have full access to the
code of the respective contract and to manually go through it.
Next we show that these tasks are everything but trivial.

B. Smart Contract Description and Discovery

A smart contract on Ethereum is equipped with contract
metadata, a JSON file with information about the contract.
It provides details about the compiler used, the interfaces
exposed by the contract in terms of a so-called Application
Binary Interface (ABI), and documentation about the contract
in Ethereum Natural Specification Format [12]. To make
contract metadata publicly accessible, it is typically published
on Swarm, a component of Ethereum Web 3 which works as a
redundant and decentralized store of Ethereum’s public record.

Although these metadata provide some insight, several
relevant details required for reuse are still missing, such as:
(i) version of the contract; (ii) type of the contract (library,
data, generic, oracle [6]); (iii) deployment information, if the
contract was deployed on a public Ethereum network (address
of the contract, ID of the network, ID of the chain)

The ID of the network identifies the Ethereum network
where a contract is deployed. For instance, the Ethereum main
network, often referred to as Ethereum mainnet, has network
ID equal to “1”; the Ropsten test network is identified by a “3”,
while other test networks, Rinkeby and Kovan, by a “4” and a
“42” respectively [13]. The ID of the chain distinguishes the
Ethereum (ETH) and the Ethereum Classic (ETC) networks
which both have “1” as their network ID: ETH has chain ID
equal to “1”, while ETC has chain ID “61” [14].

For the discovery of smart contracts, three categories of
services offer basic repository or a service registry features:

• contract name resolution services, such as the Ethereum
Name Service;

• package registration services, such as the Ethereum Pack-
age Registry (EthPM);

• Ethereum decentralized applications (DApps) directories.
The Ethereum Name Service has a similar function to

the Internet’s Domain Name Service (DNS). It uses dot-
separated, hierarchical names known as domains to resolve
human-readable names of contracts, like “contract.eth”, into
machine-readable identifiers, such as the Ethereum address or
the Swarm hash of the contract [15].

The Ethereum Package Registry is an index for Ethereum
smart contract packages based on the ERC190 Smart Contract
Packaging Specification [16]. It provides the means to publish
and consume smart contract packages in a convenient way, as
it is supported by many development tools, such as Truffle, the
most popular development framework for Ethereum.



A smart contract is typically not used “as is,” but as a
component of a larger software solution. A common use
case is the integration of a smart contract in a decentralized
application, a DApp. DApps may be distributed through spe-
cific DApps directories and marketplaces, in a similar way
to mobile apps which are distributed through app market-
places. Some of the most popular DApps directories are State
of the DApps (http://www.stateofthedapps.com) and Modex
(http://market.modex.tech).

C. Smart Contract Reuse

The most common way of code reuse in Solidity, the pro-
gramming language for writing Ethereum smart contracts, is
inheritance from one or more given contracts. When inheriting
from a contract, that contract’s source code is copied into
the code of the new contract; polymorphism is supported
[17]. Inheritance typically happens from abstract contracts, for
which at least one function lacks an implementation. Interfaces
are contracts that do not have any implemented function, that
cannot inherit from other contracts or interfaces, and that do
not define variables, structs, enums or constructors: they only
include function signatures to be refined [17].

Another type of reuse is represented by library function
calls. Libraries are contracts that do not maintain any state
and that are deployed only once at a specific address. Library
function calls (using the DELEGATECALL operation of the
Ethereum Virtual Machine) execute the code of the called
function in the context of the calling contract, making the
storage and state variables of the calling contract accessible to
the called function. In other terms, the calling contract loads
code at runtime from the target contract. This may expand the
attack surface of the calling contract as it allows the called
contract to access and potentially tamper with the calling
contract’s storage [18].

D. Objectives

The objective of the research described in this paper is
to overcome some of the aforementioned limitations to the
description, discovery and integration of smart contracts. In
particular, we aim to develop an abstract description format
to support:

• the differentiation of contract types using specific fields
of the descriptor;

• the encapsulation of endpoint information, in order to
specify how a public smart contract can be invoked.

We further aim to accompany the description format with a
dedicated registry to store smart contract descriptors, enabling
effective search and discovery by allowing developers to
navigate through available documentation and metadata.

Finally, we propose a smart contract editor for the creation
of composite smart contracts based on the principles of visual
programming [19] that:

• is integrated with the smart contract registry and fosters
reuse; and

• eases the process of writing new code for contract integra-
tion and for the implementation of additional functions.

III. SMART CONTRACT DESCRIPTION

A smart contract descriptor should encapsulate all the
information required to effectively access an Ethereum smart
contract. We identify the following five main requirements:

1) It should accommodate all the default metadata already
produced by the Ethereum compiler during compilation,
such as the specification of the interfaces of functions,
constructors and events defined in the contract, doc-
umentation for users and developers, technical details
about the compiler and the libraries used in the contract.

2) It should contemplate generic descriptive information,
such as the name of the contract, the author, the pro-
gramming language used, the type of contract, which
are needed to support search and discovery.

3) It should further contemplate all the technical details
needed to actually connect to and interact with the
contract, such as endpoint addresses, Ethereum network
IDs and chain IDs.

4) The descriptor should be able to describe both deployed
and non-deployed Ethereum contracts, meaning that
it should provide details about the endpoint only for
contracts which were deployed on a Ethereum-based
blockchain network.

5) The smart contract descriptor should be encoded in a
lightweight data-interchange format, easy for machines
to process and for developers to understand.

The information above provides the means to successfully
call a contract or library, but it does not make it possible to
inherit the contract, because inheritance in Solidity requires
access to the complete source code of the contract to be
inherited. For this reason, when available, the source code may
be provided together with the descriptor in order to enable the
implementation of inheritance scenarios.

A. Descriptor Model and Format
Given the previous requirements, the model (schema) we

propose for smart contract description is illustrated in Figure 1.
The proposal re-arranges metadata provided by the Solidity
compiler and extends them with new constructs (in bold).

The model consists of information oriented toward users
(Userdoc, Descriptor, Endpoint) and developers
(Dev), the former interested in reusing the contract, the
latter interested in extending its implementation. The prop-
erty Descriptor.author may be empty if there is no
tag @author in the contract’s NatSpec documentation. The
entity Descriptor.ABI may be empty if no methods,
constructors or events are defined in the contract. The entities
Userdoc.Methods and Dev.Devdoc.Methods may be
omitted if no documentation for methods or constructors is
defined in the contract. For deployed contracts, Endpoint
contains the address, network_id and chain_id; if
the contract is not deployed, Endpoint is not provided. The
fields Devdoc.author and Devdoc.title may not be
defined if there are no tags @title and @author in the
contract NatSpec documentation. The entity Libraries may
be empty if no libraries were used in the contract.
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Fig. 1. Smart contract descriptor model. In bold newly defined constructs compared to the metadata automatically generated by the Solidity compiler.

As for the format, we propose the use of simple JSON.
A possible alternative to JSON would have been XML, a
widely-used standard markup language adopted for WSDL
files. The main reason for the choice of JSON is that part
of the descriptor is created by extracting information from the
Solidity metadata file, which is already encoded in JSON.

Listing 1 shows an example of the JSON descriptor of the
Ownable smart contract, one of the contracts which are reused
in the context of the case study.

{
"contract": {

"descriptor": {
"name": "Ownable",
"author": "",
"description": "The Ownable smart contract

provides basic authorization control
functions, thus simplifying the implementation
of user permissions.",

"language": "Solidity",
"contract_type": "generic_contract",
"contract_version": "1.0",
"descriptor_version": "1.0",
"abi": [
{
"constant": false,
"inputs": [],
"name": "renounceOwnership",
"outputs": [],
"payable": false,
"stateMutability": "nonpayable",
"type": "function"

},
{
"inputs": [],
"payable": false,
"stateMutability": "nonpayable",
"type": "constructor"

},
{
"anonymous": false,
"inputs": [
{
"indexed": true,
"name": "previousOwner",
"type": "address"

}
],
"name": "OwnershipRenounced",
"type": "event"

}
],
"userdoc": {
"methods": {

"renounceOwnership()": {
"notice": "Renouncing to ownership will

leave the contract without an owner."
}

}
}

},
"endpoint": ,
"dev": {
"devdoc": {
"methods": {
"renounceOwnership()": {
"details": "Allows the current owner to

relinquish control of the contract."
}

},
"title": "Ownable"

},
"sources": {
"keccak256": "0

x84c7090c27cf3657b73d9e26b6b316975fa0
bd233b8169f254de0c3b3acfaefc",

"swarm_URL": "bzzr://
b983355647976c1daa5de581a1b6a41
be9c5adc17cce257b8679649db78f8a11"

},
"libraries": {},
"compiler": {

"version": "0.4.24+commit.e67f0147",
"evmVersion": "byzantium"

}
}

}
}

Listing 1. Fragment of the smart contract descriptor of the Ownable smart
contract. In bold newly defined JSON objects compared to the metadata
automatically generated by the Solidity compiler.

From the descriptor, a developer can infer that the
Ownable smart contract defines a non-payable function
named renounceOwnership, a constructor, and an event
named OwnershipRenounced with a previousOwner
parameter of type address. Additional details come in the form
of contract documentation and technical specifications.

IV. COMPOSITE SMART CONTRACT DEVELOPMENT

The development of composite smart contracts may be
supported by a visual editor integrated with a smart contract
registry. We identify the following requirements that affect the
respective development paradigm:



• It should allow the user to use a collection of visual
constructs that represent code constructs like variables,
function definitions and calls, logical expressions, events,
modifiers and other relevant Solidity statements.

• Visual constructs should be able to represent both stan-
dard Solidity instructions and more complex Solidity
patterns; the latter aim to provide high value with only
few clicks.

• It should enable the user to create smart contracts
by choosing visual constructs from a palette of con-
structs and dragging and dropping them onto a modeling
workspace. Visual contract should be configurable and
allow one to enter relevant information, e.g., the name of
variables, function arguments, comments, ....

• It should support the automatic generation of the Solidity
code corresponding to the visual constructs selected by
the user.

• It should support the integration with external oracle
services for Ethereum in order to allow users to access
external data feeds in the context of their smart contracts.

In the following, we address these requirements.

A. Compositon Metamodel

Visual programming paradigms commonly leverage on
model-driven development techniques [20], which may present
different granularities of abstraction – from constructs rep-
resenting low-level, syntactic elements, such as variables or
assignment operators, to constructs representing full-fledged
code templates that only need to be configured. We propose
an intermediate level of abstraction to represent both low-level
Solidity instructions and aggregate combinations of instruc-
tions, i.e., patterns, that developers can use to code smart
constructs without any restriction. A modeling paradigm that
suits these needs is block-based modeling (blocks are similar
to pieces of a puzzle), as supported by Google’s Blockly
framework (http://developers.google.com/blockly).

As shown in literature [21], compared to text-based pro-
gramming, blocks leverage on recognition instead of recall: the
user just has to recognize the block he/she needs among the
ones available in the visual editor without having to retrieve
from his/her memory all the constructs that he may use. In
other terms, instead of requiring the developer to remember
the full vocabulary of Solidity, he/she can benefit from a
user-friendly palette that is persistent on the screen and self-
explaining. Figure 2 illustrates the metamodel of the proposed,
block-based modeling paradigm for Solidity smart contracts.

A contract is represented as a set of nested blocks with
properties and respective values for their configuration. Which
block fits into which other block depends on the shapes
of the blocks. The shapes assure that constructed constructs
are syntactically correct. One starting block determines the
overall shape of a smart contract. In addition to their shape,
blocks may have an associated color to further highlight
their purpose and respective descriptive labels. For example,
blocks representing values are gray and have a nub, variable

Solidity instructions

Contract

Solidity pattern

Blocks Propertyfits into Value
0..n

Fig. 2. Metamodel of the block-based composition language for composite
smart contracts. In bold the Solidity patterns identified and supported.

assignment blocks are blue and have a notch. Together, these
features make block-structured code self-explanatory.

We distinguish two distinct categories of blocks, Solidity in-
structions and Solidity patterns, which specialize the described
metamodel.

B. Solidity Instructions

The Solidity instructions class contains all the native con-
structs of the Solidity language, e.g. contract documentation,
definition and usage of variables, modifiers, events, functions.
Figure 3 illustrates the metamodel of the supported instructions
and how they can are aggregated using blocks. There are
blocks or configurations for all Solidity instructions (as of
October 2018).

C. Solidity Patterns

The availability of blocks implementing typical patterns
as prefabricated aggregations of instructions enables the user
to quickly implement some frequently-used operations. For
instance, the invocation of Oraclize and the definition of
the related callback function, which typically consist of
at least 10 lines of code, can be condensed into a single
block, requiring the developer to fill in only few configuration
parameters.

Is illustrated in Figure 4, we distinguish two types of
patterns: reuse patterns and shortcut patterns.

1) Reuse patterns: These specifically enable and promote
the reuse of existing smart contracts and libraries; specifically,
the reuse patterns support:

• invocation of functions belonging to external smart con-
tracts; for instance, calls to mathematical functions be-
longing to the SafeMath external library contract, as
required in our case study;

• binding of the functions defined in an external smart
contract to a specific variable type of the contract being
edited (also known as using... for... construct);
for example, the developer may want to use a specific
external contract when operating with integer variables;

• inheritance of functions, events, modifiers and state vari-
ables from an external smart contract; for example the
SmartTrainInsurance contract inherits basic authorization
control and emergency stop mechanisms from the Own-
able and Pausable contracts;

• invocation of an oracle service to query an external API
for immediate feedback;
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Fig. 4. Metamodel of supported, high-level code patterns specializing the
generic metamodel in Figure 2

• invocation of an oracle service to schedule a query to
be performed at a specific time in the future, as required
by the SmartTrainInsurance contract to query the train
punctuality API right after the expiration date of the
policy.

2) Shortcut patterns: These represent generic, commonly
used patterns of the Solidity language inspired by the list
of Solidity Common Patterns [22] and by the OpenZeppelin
library [23]. The supported shortcuts are:

• owner variable declaration, used to specify who is the
owner of a smart contract;

• initialization of the previously declared owner variable
to value msg.sender;

• changeOwner function definition, used to change the
owner of a smart contract;

• destroy function definition, used to permanently stop
an existing smart contract and send the remaining Ether
to the owner of the contract;

• destroyAndSend function definition, used to perma-
nently stop an existing smart contract and send the
remaining Ether to a recipient to be specified as a
parameter;

• onlyBy modifier definition, used to restrict the usage of
a function only to a specified account;

• onlyOwner modifier definition, used to restrict the
usage of a function only to the owner of the contract;

• onlyAfter modifier definition, used to restrict the
usage of a function only after a specified amount of time
has passed;

• Ethereum account balance getter, used to retrieve the
balance of an Ethereum account;

• Ether transfer operation, used to transfer Ether to a
specified account.

V. IMPLEMENTATION

The current proof-of-concept prototype comprises a smart
contract registry and a web-based visual editor.

A. Smart Contract Registry Prototype

The Ethereum smart contract registry, hereafter called Solid-
ityRegistry2 is made of three main modules: a registry website

2Source code available at http://github.com/LucaGuida/SolidityRegistry



Fig. 5. Screenshot of the SolidityRegistry responsive website

generator, a smart contract descriptor generator, and a registry
API. The registry comes in the form of a responsive website
that makes the smart contract descriptors browsable by users
and an API that allows programmatic interactions. In its first
version, the registry is automatically generated from a set of
given smart contracts.

The website generator is in charge of compiling the smart
contracts and generating the respective HTML and CSS code.
It is implemented starting from an existing documentation
generator for Solidity called Doxity [24]. As shown in Figure 5
for the Ownable smart contract, each web page displays a
sidebar on the left from which the user can navigate to other
contracts, and a central area containing information about the
selected contract. The central frame displays name and type
of the contract, Ethereum endpoint (for deployed contracts),
and four tabs: Methods, ABI, Bytecode and Source Code.

The smart contract descriptor generator, the one in charge
of generating a descriptor for each smart contract stored in
the registry, is implemented from scratch as a Python script
using libraries belonging to the Python Standard Library (os,
json, shutil and distutils). The module parses the
metadata files generated by the Solidity compiler and creates
JSON descriptors compliant with the format defined before.

The registry API is designed in order to enable any external
application compatible with the HTTP protocol to access
both source code and descriptors stored in the registry. It is
implemented as a common REST API.

Fig. 6. Screenshot of SolidityEditor after loading it

B. Visual Programming Environment

The implementation of the programming environment is
more sophisticated and subject to a set of crucial functional
requirements. Next to supporting the block-based modeling
paradigm described in Section IV, the goal of the implemen-
tation was to develop an editor that:

• is able to retrieve information from the smart contract reg-
istry about third-party contracts or libraries that users may
want to re-use with calls or with the using...for...
construct in their smart contracts;

• allows the user to export the generated Solidity code to
an external IDE, such as Ethereum Remix (http://remix.
ethereum.org), in order to compile it, test it and submit
it for static code analysis (compiler warnings);

• enables the user to store the Solidity code or a snapshot of
the current state of the workspace (constructs with their
configurations and connections) on the local machine;

• enables the user to load a previously saved workspace
snapshot from a local file.

The design of the visual editor, hereafter called SolidityEd-
itor,3 is based on Google Blockly (http://developers.google.
com/blockly), a framework for the creation of visual, block-
based programming editors. Blockly allows developers to
define new custom blocks representing code constructs and
to write a code generator for each them: as a result, end-
users can benefit of an environment in which code is generated
automatically while they connect blocks in the workspace.

Alternatives to Google Blockly we considered are Open-
Blocks (http://web.mit.edu/mitstep/openblocks.html), a Java li-
brary for creating blocks-based programming environments,
and Droplet (http://droplet-editor.github.io) [21], a peculiar
toolkit for block-based editors that enables users to inter-
changeably use blocks and textual code. We excluded the

3Source code available at http://github.com/LucaGuida/SolidityEditor.



Fig. 7. Screenshot of the Modifiers category of SolidityEditor showing blocks
representing Solidity instructions (modifier definition, modifier parameter
definition, modifier parameter getter, modifier usage, modifier argument) and
Shortcut patterns (onlyBy, onlyOwner, onlyAfter).

former as it outdated and no longer under development, while
the latter is even less mature and adopted compared to Blockly.

The integration with Ethereum Remix IDE is implemented
as a Google Chrome browser extension, as it requires the
interchange of data among different browser tabs (editor tab
and Ethereum Remix IDE tab), so it could not be implemented
without a specific mechanism for enabling inter-application
communication inside the browser.

As illustrated in Figure 6, SolidityEditor is composed of a
main screen, a HTML web page made of five components:

• in the center of the page, the Blocks workspace, a white
area containing the blocks the user has selected for his
contract;

• on the left, a sidebar allows the user to navigate through
the available blocks and to drag-and-drop them into the
workspace;

• under the blocks workspace, a text area contains the
Solidity source code of the contract generated from the
blocks;

• on the bottom left, another sidebar allows the user to
locally store the workspace, to load a previous snapshot
of the workspace (feature still under development in the
current version of the prototype), or to save the Solidity
source code;

• on the top right, a button in the browser UI launches the
Chrome extension, which provides the user with an easy
way to compile the smart contract with one single click.

In order to support all Solidity instructions and patterns
discussed in Section IV in SolidityEditor, we implemented 70
blocks. In addition, the editor comes with a small collection
of 9 Google Blockly pre-defined blocks (if-else control state-

Fig. 8. Screenshot of the external contract and function selector based on the
integration with SolidityRegistry

Fig. 9. Screenshot of the query and query result blocks which may be used
for connecting with Oraclize

ments, logic operations, number and string input blocks). A
large majority of native Solidity constructs is now available
as blocks in SolidityEditor. Among the 70 custom blocks, 15
of them represent the Reuse patterns and Shortcut patterns
introduced in Section IV-C, as illustrated in Figure 7.

By leveraging the integration with SolidityRegistry, users
can access the registry from the editor, and then add to their
workspace blocks that provide the means to call external
contracts or libraries available in the registry. Figure 8 shows
how to invoke the registry from the editor.

Similarly, inheritance from external contracts and the con-
struct using...for... are implemented as two specific
blocks that make it possible for a contract to inherit func-
tions, events and modifiers, or to bind external libraries from
SolidityRegistry.

Moreover, the developer has access to specific blocks for
querying an oracle service, namely Oraclize: as shown in
Figure 9, the query block makes it possible to enter the URL of
an endpoint to be queried, for instance a web service providing
weather data or currency conversation rates, while the query
result block enables the use of the response.

The manipulation and composition of blocks is constrained
by some basic verification mechanisms. For example, drop-
down menus embedded into blocks allow the developer to
select only the variables and parameters in the scope of that
specific block, thus preventing out-of-scope errors or mistyped



identifiers. Similarly, when emitting an event, using a modifier,
invoking a function or assigning a value to the member of a
struct variable, dynamic drop-down menus make it easy to
pick the desired element among the available ones. Further
automated checks may be implemented in order to anticipate
validations that typically happen at compile time.

VI. CASE STUDY

As an informal validation of the conceived development
paradigm and the respective modeling tool, we implemented
the SmartTrainInsurance smart contract described in Sec-
tion II-A. We recall that the contract requires reusing four
third-party smart contracts: Ownable, Pausable, SafeMath and
usingOraclize. In the implementation we made the assumption
that the fee charged by Oraclize for the monthly query opera-
tion to the external API has a minimal impact on the balance
of the contract, thus not interfering with the compensation
mechanism.

For a preliminary assessment of the benefits of SolidityEdi-
tor and SolidityRegistry, we implemented the smart contract in
two different ways: first, by hand; then, using SolidityEditor4.
The manual implementation did not use the Ownable, Paus-
ableor, and SafeMath smart contracts and instead implemented
the respective functionality from scratch. Figure 10 illustrates
an excerpt of the block model of the contract during develop-
ment; more specifically, it represents the blocks used to inherit
external contracts, and to define state variables, events and the
constructor function.

SolidityEditor substantially reduced the risk of syntax er-
rors (shorter time needed for debugging) and lowered the
minimum knowledge of the programming language needed to
implement a new contract (no need to consult the Solidity
documentation). Also the code produced by SolidityEditor
was more compact than the manually implemented one: after
removing empty lines, the manually developed code counted
152 LOC, while the code produced by SolidityEditor counted
111 LOC – a 27% reduction. This result is a consequence
of the increased code reuse in SolidityEditor thanks to the
usage of SolidityRegistry: instead of defining typical Solidity
events, modifiers and functions from scratch, the inheritance of
pre-existing contracts (Ownable and Pausable) and the usage
of a library (SafeMath) made it possible to obtain the same
functionalities with less source code.

From a qualitative point of view, we also observe that the
formatting style and indentation of the automatically generated
code are consistent throughout the contract. Also, the usage
of blocks with specific shapes and connectors enforces the
generation of more structured code: similar constructs result to
be clearly grouped in sections, so all the modifiers are defined
together, followed by event definitions, then constructor and
function definitions, and so on according to a disciplined
paradigm.

4The Solidity code of the two versions can be inspected at https://github.
com/LucaGuida/SmartTrainInsurance

Fig. 10. Screenshot of the development process of the SmartTrainInsurance
contract in SolidityEditor

VII. RELATED WORK

A possible way to enable the creation of smart contracts
by non-developers may consist in designing smart contract
templates and enabling users to customize their behaviour
by entering information or configuring options in a user-
friendly User Interface (UI). However, as of the time of writing
template-based smart contract creation tools do not support
the composition of multiple smart contracts, thus jeopardize
the integration and reuse of existing smart contracts. Another
shortcoming of these solutions is their lack of flexibility: the
user has to stick to a limited set of templates without any
opportunity to make changes or to add further features. For
example, Dealmate (http://dealmate.io) is a template-based
contract builder that enables users to create basic Ethereum
smart contracts between two parties, for instance a buyer and
a seller, with the contract acting as an escrow agent. Other
examples are TokenGen (https://tokengen.io) and BlockCAT
(https://blockcat.io), tools that make it possible for anyone
to create an ERC20 token smart contract and to launch a
token sale. When using these platforms, the user is expected to
customize the contract only by filling in some input fields: the
smart contract cannot be tailored to the actual requirements of
the user.

As an alternative to template-based solutions, many re-
searchers are investigating the possibility of adopting existing
modelling languages, such as the Business Process Model
and Notation (BPMN), to support the composition of smart
contracts.



For example, Falazi et al. [25] propose a methodology to
integrate blockchain-based operations within Business Pro-
cess Management Systems (BPMSs), software solutions that
support the creation of instances of BPMN process models,
thus automatizing the execution of tasks and allowing process
managers to monitor the state of processes. More specifically,
they extend the standard BPMN in order to support read/write
operations of blockchain transactions: their goal is to allow
any existing BPMS solution compliant with BPMN 2.0 to
interact with blockchain platforms during the execution of
business processes. This is achieved with the Blockchain-
aware Modeling and Execution (BlockME) method, which
extends BPMN 2.0 with blockchain-aware constructs, enables
the transformation of BlockME models into standard BPMN
2.0 models and finally introduces a middleware component
called Blockchain Access Layer (BAL) which allows business
process engines to access blockchain operations using asyn-
chronous Application Programming Interfaces (APIs).

However, BPMN-based solutions use a notation and a
methodology that was designed specifically for modeling busi-
ness processes, and which may not be appealing to developer
who are not familiar with that kind of approach.

VIII. CONCLUSION AND FUTURE WORK

This paper contributes to the state of the art with two
novelties in the blockchain landscape: an abstract description
format for Ethereum smart contracts that provides all nec-
essary information to search for and reuse smart contracts,
and a visual programming environment for assisted develop-
ment of smart contracts. The description format is equipped
with a proof-of-concept implementation of a smart contract
registry, i.e., SolidityRegistry. The programming environment,
SolidityEditor, features a block-based modeling formalism
equipped with constructs for basic Solidity instructions and
more complex, aggregated patterns of instructions. The goal
of these latter is to specifically foster reuse among smart
contracts. The approach takes inspiration from web services
(smart contracts) and service-oriented computing (registry and
composition paradigm), and shows that smart contracts indeed
present similar reuse opportunities as web services.

The case study implemented both manually and using
SolidityEditor describes a first hands-on experience of the
benefits of coding with blocks. Of course, the development
of reliable smart contracts still requires intimate knowledge
of the functioning mechanisms of the underlying blockchain
platforms and specialized coding skills. It is not possible
to completely eliminate the innate complexity of today’s
blockchain technology using a visual programming paradigm.
Further abstractions and simplifications will be needed to make
the technology accessible also to non-experts. Some of these
simplifications may be achieved, for example, by refining the
proposed visual programming paradigm; others will require
simplifications of the underlying technology.

In our future work, we will further refine the proposed
description format, so as to include also information about
usage policies and pricing (which we omitted in this paper for

simplicity). We also consider integrating SolidityRegistry with
tools such as Etherscan (http://etherscan.io) to enable users to
obtain more information about deployed contracts and their
actual usage, and to publish the registry online. Then, we
also plan to conduct proper user studies with SolidityEditor,
in order to identify strengths and weaknesses and to improve
its effectiveness.

Finally, as an additional contribution, both SolidityRegistry
and SolidityEditor are open source and free for use.
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