
Monitoring and Analyzing Service-based Internet
Systems through a Model-Aware Service Environment

Ta’id Holmes1, Uwe Zdun1, Florian Daniel2, and Schahram Dustdar1

1 Distributed Systems Group, Institute of Information Systems
Vienna University of Technology, Vienna, Austria

{tholmes, zdun, dustdar}@infosys.tuwien.ac.at
2 Information Engineering and Computer Science Department

University of Trento, Trento, Italy
daniel@disi.unitn.it

Abstract As service-based Internet systems get increasingly complex they be-
come harder to manage at design time as well as at runtime. Nowadays, many
systems are described in terms of precisely specified models, e.g., in the context
of model-driven development. By making the information in these models ac-
cessible at runtime, we provide better means for analyzing and monitoring the
service-based systems. We propose a model-aware repository and service envi-
ronment (MORSE) to support model access and evolution at both design time and
runtime. MORSE focuses on enabling us to monitor, interpret, and analyze the
monitored information. In an industrial case study, we demonstrate how compli-
ance monitoring can benefit from MORSE to monitor violations at runtime and
how MORSE can ease the root cause analysis of such violations. Performance and
scalability evaluations show the applicability of our approach for the intended use
cases and that models can be retrieved during execution at low cost.

1 Introduction

In the Internet of services, systems get increasingly complex. Often it is hard to manage,
analyze, and monitor such complex service-based systems at runtime. This is, (1) the
complexity of service-bases systems needs to be mastered and (2) requirements that are
imposed on such systems have to be monitored.

For various reasons, many systems (cf. [1,2]) and requirements (cf. [3,4]) today
are modeled with precisely specified and detailed models. One of these reasons is the
increasing use of model-driven development (MDD) [5] that helps to master the com-
plexity of systems during development. Management, analysis, and monitoring results
could be improved by making the information in the precisely specified models accessi-
ble at runtime. We propose a repository-based approach, in which the MDD models of a
service-based system and its system requirements can be used at runtime to interactively
interpret or analyze the monitored information.

As an illustrative case for system requirements, consider compliance to regulations:
A business information system needs to comply with regulations, such as Basel II [6]
or the Sarbanes-Oxley Act (SOX) [7]. Runtime monitoring of service-based business

processes can be used to detect violations of such regulations at execution time. If a
violation is detected, a report can be generated and a root cause analysis started. In
order to trace back from process instances that have caused a violation to the model
elements that have driven the execution of those instances, information described in
models of the system needs to be queried.

In addition, service-based systems not only require read access to the models, but
also write access. In the compliance management case, for example, once a root cause
analysis indicates a problem in a model, the developer should be able to (1) open the
respective model for modification, (2) perform the modifications on-the-fly, and (3) add
the new model version to the running system so that newly created model instances can
immediately use the corrected, evolved version.

In this paper, we propose to address these issues using an architecture and soft-
ware environment called the Model-Aware Repository and Service Environment
(MORSE) [8]. MORSE supports the tasks of the MDD life cycle by managing MDD
artifacts, such as models, model instances, and transformation templates. Models are
first-class citizens in MORSE, and they can be queried, changed, and updated both at
design time and runtime. That is, the models in the repository can be used by the gen-
erated service-based system (e.g., the compliance monitoring infrastructure) via Web
services to query and change the models while the system runs. Thanks to its generic,
service-based interfaces, MORSE can be integrated in various monitoring and analysis
infrastructures. We have evaluated our prototype using exhaustive performance and
scalability tests to validate the applicability of the approach in practice.

This paper is structured as follows: In the next section we will give a motivating
example and illustrate the monitoring architecture employed for our approach. In Sec-
tion 3 we present MORSE the Model-Aware Repository and Service Environment and
describe how Internet-based systems can be enhanced with traceability information for
monitoring and analyzing these systems. Next, in Section 4 we illustrate our work with
a case study. Performance and Scalability evaluations are then presented in Section 5.
Section 6 compares our approach to related work, and in Section 7 we conclude and
refer to future work.

2 A Model-Aware Service Environment in Compliance Monitoring
and Analysis

First we outline a concrete example motivating the need for a model-aware repository
and service environment for monitoring and analysis purposes. We consider the prob-
lem of monitoring and analyzing business processes to identify compliance violations.
In particular, we focus on a monitoring infrastructure that observes a business IT system
while it is running business processes modeled, for instance, as BPEL [9] processes. Us-
ing a dedicated model for compliance concerns, the system knows about how to identify
violations. A simple example of a compliance rule is the four eyes principle, which re-
quires that a single operation in a business process must be performed by two different
actors. If the monitoring infrastructure observes a violation of a compliance concern, it
reports it to the user via a compliance dashboard.

Upon the detection of a violation, the user typically wants to understand which
process has caused the violation and why. Hence, the user should access the process
model that has caused the violation. However, sometimes the process model is not the
only relevant information or not the root cause of the violation. Other models linked to
the process model might carry the answer to the violation; hence, they must be accessed,
too. Examples are the model specifying the compliance rule that has been violated or
the models of the processes that have invoked the process leading to the violation.

Finally, once the root cause has been identified, it is likely that the user will fix
the affected models. Then, the corrected models should from then on be used for new
instances of the business processes. Here, a transparent versioning support is crucial, as
it is typically not possible to automatically migrate running process instances from one
model to another. Old model versions must be supported as long as instances of them
are running, unless the execution of such instances is halted.

To enable using models at runtime as described in this scenario, we propose the
following runtime features:

Model-aware repository and service environment The repository contains all mod-
els of the system. These can be queried and changed via service-based interfaces at
runtime (see also Figure 2).

Eventing infrastructure In our approach, the code setting up the emission of events
is generated via MDD from process and compliance models. That is, the process
engine is instrumented to emit events, such as process started, process ended, or
process activity entered. Each of these events includes a unique identifier to the
model artifact, such as process model P or activity A in the process model P , that
is the source of the event.

Monitoring infrastructure A monitoring infrastructure is required to continuously
observe and analyze emitted events to check compliance. Runtime requirements-
monitoring systems, such as proposed by Feather et al. [10] and Skene and Em-
merich [3], can be integrated with MORSE and used for the compliance checking.
If a violation occurs, the model responsible for the violation can easily be identified
using the identifier contained in the event(s) that caused the violation.

In the MORSE repository, the various models are linked via relationships. Hence,
the root cause of the violation can be determined by traversing these relationships. For
instance, a process model can be annotated in different models exogenously with com-
pliance concerns, and the monitoring infrastructure needs to resolve what concern has
been violated. To do so, another service-based request is sent to the repository for re-
trieving the compliance concerns that annotate the source model. In a number of inter-
active steps, the root cause of a violation can be detected.

Figure 1 shows the application of our approach for our illustrative case study in an
event-driven architecture [11] for compliance monitoring combining both online moni-
toring (on-the-fly analysis of events at runtime) and offline monitoring (analysis of audit
trails and event logs) in an service-oriented environment. Online monitoring and on-the-
fly event analysis is necessary to react as quickly as possible to violations. However, not
all violations of compliance in service-based Internet systems can be determined online
(consider, e.g., long-running processes). Such violations typically require offline anal-
ysis such as an investigation of the event history.

Instrumented
Services

Application Server

Business
Process
Engine

Model-
Aware

Repository

ESB

Reporting/
Analysis

Event
Log

Compliance
Governance

Web UI

Runtime
Compliance
Monitoring

analysis
results

data

data

events

alerts,
violations

Audit
Trail

events

events

events

Extract,
Transform,
Load (ETL)

Monitoring Infrastructure
create/modify models and DSLs

query/get
process models and
compliance rules

query/get
eventing instructions

query/get
process models

query/get
process models and
compliance rules

transform
models

and DSLs

Data
Warehouse

execution data

Figure 1. MORSE Combined with an Online and Offline Monitoring Infrastructure

Figure 1 shows a representative example of a monitoring infrastructure combining
the two monitoring approaches with MORSE: The execution of services and business
processes emits events, which provide information about the concrete execution of ser-
vices and process instances. Events are, therefore, emitted by the business process en-
gine and by the instrumented services and published via a central enterprise service bus
(ESB). The ESB provides publish/subscribe support for events consumed by the moni-
toring components. In the proposed architecture, the event log component is subscribed
to any event that is relevant for monitoring and further processing. Additional process
execution data (e.g., data that is not carried with events, such as engine-internal events)
are stored in a dedicated audit trail.

Starting from the event log and the audit trail, the analysis components such as
the data warehouse (that stores all execution data), the extract/transform/load (ETL)
procedures (that are responsible for extracting the data needed for the compliance anal-
yses from the event log and the audit trail, transform them into the data format of the
data warehouse, and load them into the warehouse), and the compliance governance
Web user interface (UI), which includes a compliance governance dashboard for hu-
man users.

Processes and compliance concern models are stored in the MORSE repository and
deployed onto the compliance monitoring infrastructure for execution, monitoring, and
analysis. Specifically, the process engine and instrumented services query the model-
aware repository for process models and eventing instructions. Eventing instructions are
automatically generated from the compliance concerns in the repository. The runtime
compliance monitoring component and the ETL procedures query the repository for
process models and compliance concern models for compliance evaluation. Finally, the
user of the compliance governance UI creates and modifies models and compliance
concerns on-the-fly, directly working on the MORSE repository.

3 Model-Aware Repository and Service Environment

The integration of MORSE into the compliance governance infrastructure with its on-
line and offline monitoring features poses a variety of requirements to its model man-
agement capabilities. As most stringent we specifically highlight the following:

– It is necessary to store, deploy, maintain and evolve process and service models as
well as compliance annotations (expressed via dedicated DSLs) in a way that al-
lows one to keep consistent relationships among these artifacts, which are typically
subject to change over time. For instance, it is necessary to be able to associate a set
of compliance rules to a process model and to correctly maintain such association
even after the modification of the process model or the addition, modification or
deletion of individual compliance rules.

– For the online analysis of compliance violations, it is necessary to be able to drill
down from high-level process models down to individual activities or event anno-
tations, associated with the process model. It is therefore necessary that the repos-
itory is aware of the hierarchical composition of process definitions and that each
element in the model can be properly indexed. Given a violation of a compliance
rule in a process instance, it might, for example, be necessary to retrieve the pro-
cess definition and to drill down to the specific activity that caused the violation, in
order to understand how to mitigate future violations.

– Finally, given its use at runtime of the monitoring infrastructure, fast response times
and high query throughput are paramount. Individual compliance rules associated
with a given process model might, for instance, be queried at each instantiation of
the process, in order to set up the runtime compliance monitoring module (based
on complex event processing [11]).

MORSE supports the above compliance governance scenario (and similar cases) in
that it suitably addresses these requirements, going beyond simple file system based
model management. In particular, the main features of MORSE that simplify the devel-
opment of the monitoring infrastructure include:

– The MORSE repository stores and manages models, model elements, model in-
stances, and other MDD artifacts. It offers read and write access to all artifacts at
runtime and design time. Moreover, it stores relationships among the MDD arti-
facts, e.g., model-relationships such as instance, inheritance, and annotation rela-
tions (for details see also Figure 5 in [8]).

– Information retrieval (i.e., the querying of models) is supported for all MDD arti-
facts and relationships via service-based interfaces, which ease the integration of
MORSE into service-oriented environments (for details see also Table I in [8]). For
reflectively exploiting the relationships of MDD artifacts, the MORSE information
retrieval interface provides various methods, too. An example of such a reflective
relationship access is to retrieve all model instances for a model. By traversing the
relationships and exploiting properties, complex queries can be constructed in an
interactive, stepwise manner.

– The MORSE repository provides versioning capabilities not only to the artifacts,
but also to their relationships. This way, models can be manipulated at runtime of
the client system with minimal problems regarding maintenance and consistency.
New versions and old versions of the models can be maintained in parallel, so that
old model versions can be used until all their model instances are either deleted or
migrated to the new model version.

Figure 2 shows the internal architecture of MORSE that can be used by various
clients via its Web service interfaces. The models are created by human modelers using
modeling tools. Using admin clients, MDD projects in the MORSE repository can be
created. Import clients allow the modelers to add models, model elements, and model
relationships, or to provide them in a new version.

MORSE Repository

Web Service
Interfaces

Generic
Repository
Interface

MDD Project
Administration

Interface

Resource
Management

Interface

Information
Retrieval
Interface

Runtime Client

Modeling Tools

create/modify models

query models & projects

MDD Project
Admin Client

build, deploy project

access

access

Persistence
Backend

Builder
Service

Deployment
Service

invoke

access

access

Figure 2. MORSE Architecture

The model repository is the main component of MORSE and has been designed
with the goal to abstract from specific technologies. Thus, while concepts are taken
from, e.g., UML [12], and also version control systems such as Subversion [13],
MORSE is particularly agnostic to specific modeling frameworks or technologies. The
model repository itself has been realized with technologies such as Eclipse Modeling
Framework (EMF) [14], Teneo [15], EclipseLink [16], PostgreSQL [17], and Apache
CXF [18].

MORSE can also generate Web services for domain concepts that are expressed
in EMF models. This is, for every concept a service is generated with basic create,
retrieve, update, delete and query operations. For the different relations between con-

CSource source = Singletons.FACTORY.createCSource();
source.setDescription(”SOX Sec.409”);
CRisk risk = Singletons.FACTORY.createCRisk();
risk.setDescription(”Penalty”);
risk.setImpact(EnumWeight.HIGH);
risk.setProbability(EnumWeight.LOW);
CRequirement requirement = Singletons.FACTORY.createCRequirement();
requirement.setDescription(”Rapid publication of Form 8−K”);
CRequirementService requirementService = new CRequirementWSProxy(requirement);
requirementService.create();
requirementService.addSources(source);
requirementService.addRisks(risk);

Listing 1.1. Populating MORSE with Instances of Compliance Domain Concepts

cepts appropriate add and remove operations are generated in addition for associating
and deassociating role instances.

Besides these service implementations, MORSE provides developers with Java li-
braries that are distributed using a Maven [19] repository. Listing 1.1 shows an example
from a script that populates MORSE with instances of compliance domain concepts
using the generated libraries. In the example a compliance source that relates to SOX
Section 409 as well as a compliance risk are associated with a compliance requirement.

3.1 The MORSE Approach for Service-based Internet Systems

Our approach applies MDD to generate services and process code, deployment artifacts,
and monitoring directives. Usually, in MDD there are no backward or traceability links
in the sense that the generated source code “knows” from which model it has been
created. For correlating model instances or code at runtime with source models or model
instances, respectively, traceability of model transformations is essential.

To achieve traceability, models (as the output of the generator) can hold a reference
to their source models. As MDD artifacts in MORSE repositories are identifiable by
Universally Unique Identifiers (UUIDs) [20], MORSE annotates the destination models
with the UUIDs of the models. The generator can automatically weave references to
these UUIDs into the generated source code or configuration instructions, so that the
corresponding models can be identified and accessed from the running system. Please
note, that UUIDs are transparently created and used in the MORSE repository (e.g.,
the create operation returns the assigned UUID). Particularly, a user or developer (cf.
Listing 1.1) does not necessarily have to specify UUIDs for interacting with MORSE.

The code in Listing 1.2 shows a generated BPEL process that contains traceability
information as a BPEL extension. The executing BPEL engine emits events for, e.g.,
the process activities that contain matching UUIDs. Finally, the events are processed by
the monitoring infrastructure.

<process name=”ReportIntrusion”>
<extensions>

<extension mustUnderstand=”yes”
namespace=”http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd”

/>
</extensions>
<import importType=”http://www.w3.org/2001/XMLSchema”

namespace=”http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd”
location=”http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd”

/>
<morse:traceability

build=”56810150−5bd8−4e8e−9ec5−0b88a205946b”>
<row query=”/process[1]”

queryLanguage=”urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0”>
<uuid>6338b114−3790−4566−a5c4−a35aa4efe41b</uuid>
<uuid>cd2865e2−73a7−4c8d−8235−974057a40228</uuid>
<uuid>4bcf3d70−9c23−4713−8602−3b64160c45e8</uuid>
<uuid>c568c290−e03e−46c8−9a9a−d7afde80cc3a</uuid>

</row>
<row query=”/process[1]/sequence[1]/receive[1]”>

<uuid>354b5161−dfab−44ef−9d52−3fb6a9d3411d</uuid>
</row>
<row query=”/process[1]/sequence[1]/invoke[3]”>

<uuid>7d32b4f4−4f63−4223−8860−db213f7e0fe1</uuid>
</row>

</morse:traceability>
<sequence>

<!−− ... //−−>
</sequence>

</process>

Listing 1.2. BPEL Process with an Extension for MORSE Traceability

4 Case Study: Compliance to Regulations

Let us consider an industrial case study in which MORSE has been applied: A US credit
card company that wants to comply with Section 409 (Real Time Issuer Disclosures) of
SOX [7]. Section 409 requires that a publicly traded company discloses information re-
garding material changes in the financial condition of the company in real-time (usually
meaning “within two to four business days”), see also Figure 3. Changes in the financial
condition of a company that demand for disclosure are, for example, bad debts, loss of
production capacity, changes in credit ratings for the company or large clients, mergers,
acquisitions, or major discoveries.

For the case of the credit card company, we consider the following reference sce-
nario regarding the change in the financial condition: security breaches are detected in
the company’s IT system, where personal information about customers might get stolen

or lost. The business process in the lower part of Figure 3 shows a possible practice
that the company may internally follow to react to a detected intrusion. After an initial
assessment of the severity of the intrusion, the company immediately starts the neces-
sary response action to mitigate risks and prevent similar future intrusions. After the
response, if personal information got lost or stolen, the disclosure procedure is started.
As detailed in the process, the actual disclosure is performed by filing a so-called Form
8-K report, a specific form used to notify investors and the U.S. Securities and Exchange
Commission (who is in charge of controlling the compliance with SOX).

A credit card company might for
instance implement a business process
for the reporting of security breaches.

Dashboard with up-
to-date compliance

analysis reports.

Assess
Intrusion End

yes

no

Personal info
lost or stolen?

Response Write
Form 8-K

Approve
Form 8-K

The publication of the press release must occur within
2 business days after the detection of the intrusion.

Publish
Form 8-K!

SEC. 409. REAL TIME ISSUER DISCLOSURES.

Section 13 of the Securities Exchange Act of 1934 (15 U.S.C. 78m), as
amended by this Act, is amended by adding at the end the following:

“(l) REAL TIME ISSUER DISCLOSURES - Each issuer reporting under
section 13(a) or 15(d) shall disclose to the public on a rapid and current basis
such additional information concerning material changes in the financial
condition or operations of the issuer, in plain English, which may include
trend and qualitative information and graphic presentations, as the
Commission determines, by rule, is necessary or useful for the protection of
investors and in the public interest.”.

Figure 3. SOX Example

Note that full compliance with Section 409, of course, requires that all business
practices in the company are compliant; the case of stolen or lost personal information
represents only one out of multiple business practices in the credit card company that
are subject to Section 409 of SOX.

The sole implementation of the compliant business process does not yet guarantee
compliance: failures during process execution may happen (e.g., due to human errors,
system failures, or the like), and the preparation and publication of the Form 8-K might
be delayed, erroneous, or even forgotten. Awareness of such problems is of utmost im-
portance to the company, in order to be able to react timely and, hence, to assure busi-
ness continuity. In this regard, the ability to perform root cause analyses to understand
the reason for specific compliance violations is needed.

We assume that the monitoring infrastructure in Figure 1 is used throughout the
architecture and that MDD is used to make sure, all models are placed in the MORSE
repository, and the UUIDs are used in all events emitted in the system. The MORSE

repository can be used to support creating reports and running root cause analyses by
making all MDD artifacts accessible at runtime. Once the cause of a violation has been
understood, the developers of the company should be able to redesign the MDD artifacts
(e.g., the business processes) to avoid similar violations in the future.

2. Emit events

Before: sequential task execution; slow, lots of violations

MORSE Repository
UUID 1

formID = „Form8K“
duration = 2
unit = BusinessDays
...

: PublishDeadline

UUID 5

Business
process
engine

1. Deploy process models

Monitoring
Infrastructure

UUID 3UUID 2UUID 1

3. Get compliance models
(rules) for process

UUID 1

Violation
detected

5. Retrieve responsible /
corresponding models

ID = „Sec 409 Real time issuer disclosures“
...

: ComplianceConcern

UUID 4

Compliance
governance

Web UI

6. Report violation

7. Root cause analysis / manipulation of model(s)

Assess
Intrusion End

yes

no

Personal info
lost or stolen?

Response Write
Form 8-K

Approve
Form 8-K

Publish
Form 8-K

!
UUID 3

UUID 2

UUID 4

UUID 5

Assess
Intrusion End

yes

no

Personal info
lost or stolen?

Response

Write
Form 8-K

Approve
Form 8-K

Intrusion
detected

Publish
Form 8-K!After: parallel task execution; faster, fewer violations

UUID 1

4. Process
and

analyze
events

Figure 4. Resolved SOX Example

Figure 4 illustrates the interplay of MORSE, the monitoring infrastructure, and the
compliance governance Web UI when dealing with compliance violations. All mod-
els are placed in the MORSE repository. A model of a business process is annotated
by compliance models. They relate to a certain regulation or specify details for an im-
plementation. In our example, a ComplianceConcern annotates the process and a
PublishDeadline annotates the process activity Publish Form 8-K. These anno-
tation models will be retrieved and evaluated by the monitoring infrastructure for de-
tecting violations during runtime. From MORSE, the business process is automatically
deployed on a business process engine (1). The business process engine emits various
events such as when a process is initialized or when an activity is invoked or completed
(2). These events contain the corresponding UUIDs and are intercepted by the monitor-
ing infrastructure, which requests the compliance rules related to the intercepted events
from MORSE (3).

Validation then takes place in online or offline operation mode (4). In case of a vio-
lation (i.e., Form 8-K has not been published within two business days according to the
PublishDeadline), it is signaled in the dashboard. To present meaningful information
to the user of the dashboard, the models responsible for the violation are retrieved from
the MORSE repository and shown to the user (5). That is, the monitoring infrastructure

first requests the original MDD artifact by UUID and then explores its relationships.
Particularly, a compliance concern model instance that relates to the process or process
activity can be identified and displayed for adequate feedback towards the user (6).

The user can now analyze the violation by traversing the models and/or performing
additional queries. That is, the dashboard or the user consults the repository for resolv-
ing and identifying the root cause of the violation. In our example, the root cause lies
in the sequential structure of the control flow of the process. The user can now improve
the responsible model so that new processes may not violate the compliance concern
any longer (7). In our example, the business expert improves the process so that in-
dependent tasks are executed in parallel. As a result the execution becomes faster and
fewer violations occur. Using the MORSE versioning capabilities, the new model can
be added to the repository, and used in MDD generations henceforth.

5 Performance and Scalability Evaluation

For determining how many queries per second can be processed by the MORSE reposi-
tory, we have conducted runtime performance and scalability tests on our prototype as
shown in Figure 5. We measured the execution time for queries (ordinate) of a repos-
itory containing a given number of models (abscissa) and found polynomial execution
time (R2 > 0.99). For example, to interpret Figure 5, a MORSE repository with up to
217 (131 072) models can process at least 15 queries (≤ (216.04/1024/103)−1) within
one second. This means, performance and scalability is far better than what is needed in
scenarios similar to our case study that work with long-running process instances which
emit events only from time to time.

Thus, models can be retrieved during execution at a low cost, especially when as-
suming typical Web service invocation latency. Limitations of our prototype and hard-
ware arise with increased number of models, process instances, and events that trigger
lookups, e.g., huge MORSE repositories with more than ≈ 217 models cannot perform
106 lookups per day (arising, e.g., from 102 processes with 102 instances each that
generate 102 events per day each). Further scalability, however, can be achieved using
clusters and caches.

6 Related Work

In our approach we assume that a monitoring infrastructure is used throughout the archi-
tecture for observing and analyzing runtime events (cf. Section 2). While such monitor-
ing infrastructure can be integrated with MORSE and used for the compliance checking,
our work particularly focuses on relating to models, the monitored systems have been
generated from. Thus, our work makes such models accessible at runtime. Note, that not
only, e.g., process models but also compliance concern models are managed by MORSE.
This allows for the novel and direct linkage and correlation of model-driven system and
requirements models. In this section we refer and relate to work in the areas of runtime
requirements-monitoring and model management in form of model repositories.

0 5 10 15 20

5
1
0

1
5

2
0

2
5

3
0

ld(n(Models) [])

ld
(Q

u
e
ry

 E
xe

c
u
ti
o
n
 T

im
e
 [
m

s
])

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R² = 0.991

 y = 0.05 x² + 0.36 x + 3.38

l

l

l

l
l l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l

y = 0.05 x² + −0.64 x + 13.38

4xIntel Xeon 3.20GHz

 Ubuntu 8.04 (2.6.24−23−server #1 SMP Wed Apr 1 22:14:30 UTC 2009 x86_64 GNU/Linux)

 PostgreSQL 8.3.7

 OpenJDK 64−Bit Server VM (build 1.6.0_0−b11, mixed mode)

(17 , 16.04)

l

n(Queries) = n(Models)

1024 Queries

Figure 5. MORSE Performance and Scalability

Feather et al. [10] discuss an architecture and a development process for monitoring
system requirements at runtime. It builds on work on goal-driven requirements engi-
neering [21] and runtime requirements monitoring [22].

Skene and Emmerich [3] apply MDD technologies for producing runtime require-
ments monitoring systems. This is, required behavior is modeled and code is generated
for, e.g., the eventing infrastructure. Finally, a meta-data repository collects system data
and runs consistency checks to discover violations. While in our work we also show-
case the generation of code for the eventing infrastructure (see Section 3), our approach
assumes an existent monitoring infrastructure. In case of a violation the MORSE ap-
proach not only allows us to relate to requirement models but also to the models of the
monitored system.

Chowdhary et al. [4] present a MDD framework and methodology for creating Busi-
ness Performance Management (BPM) solutions. This is, a guideline is described for
implementing complex BPM solutions using an MDD approach. Also, with inter alia
the specification of BPM requirements and goals the framework provides runtime sup-
port for (generating) the eventing infrastructure, data warehouse, and dashboard. The
presented approach allows for the monitoring and analysis of business processes in re-
spect of their performance. Thus, similarly to our approach, compliance concerns such
as quality of service concerns as found in service level agreements can be specified
and monitored by the framework. Besides the monitoring of business processes and
service-based systems in general, our approach particularly focuses on also relating to
conceptual models of the systems from the runtime, not only their requirements. As a

consequence, the system and end-users can directly relate to the MDD artifacts of a
system in case of a violation. This allows for the subsequent reflection, adaptation, and
evolution of the system. In contrast, the BPM solution supports compensation, i.e., the
execution of business actions according to a decision map.

Another model-based design for the runtime monitoring of quality of service aspects
is presented by Ahluwalia et al. [23]. Particularly, an interaction domain model and an
infrastructure for the monitoring of deadlines are illustrated. In this approach, system
functions are abstracted from interacting components. While a model-driven approach
is applied for code generation, the presented model of system services is only related to
these in a sense that it reflects them. This is, it is not a source model for the model-driven
development of the services. In contrast, MORSE manages and is aware of the real
models, systems are generated from. This allows for root cause analysis and evolution
of as demonstrated in the presented case study (see Figure 4).

Besides the monitoring of runtime requirements in form of compliance concern
models, the MORSE approach particularly focuses on the management of models of
service-based systems and their accessibility during runtime. For this reason, a model
repository with versioning capabilities is deployed (see Section 3). It abstracts from
modeling technologies and its UUID-based implementation allows for a straightfor-
ward identification of models and model elements. Other model repositories such as
ModelBus [24] and ModelCVS [25] primarily aim at model-based tool integration.
AMOR [26,27] and Odyssey-VCS 2 [28] particularly have a focus on the versioning
aspect of model management (see also [29]), e.g., for the conflict resolution in col-
laborative development (cf. [30]). These works mainly focus on the design time: e.g.,
ModelBus addresses the heterogeneity and distribution of modeling tools and focuses
on integrating functionality such as model verification, transformation, or testing into a
service bus. MORSE, in contrast, focuses on runtime services and processes and their
integration, e.g., through monitoring, with the repository and builds on the simple iden-
tification for making models accessible at runtime.

7 Conclusion

Monitoring and analysis of models and model elements at runtime is a real and urgent
requirement in complex, Internet-based systems. Given the continuously growing adop-
tion of model-driven development practices and the rising complexity of service-based
systems, we have shown the usefulness of shifting the focus of model management
from design time to runtime. As a first step into this direction, in this article we have
presented MORSE, an implementation of a model-aware repository and service envi-
ronment concept that treats models as first-class citizens at runtime of a service-based
system. The MORSE approach significantly eases the management of complex service-
based systems by improving the analyzability, e.g., of monitoring data. This has been
demonstrated in an industrial case study for compliance management. The benefits of
our approach can be achieved with acceptable performance and scalability impacts.
While our approach facilitates monitoring, it can also be beneficial to other fields of
application that profit from accessing models at runtime, e.g., in adaptive systems.

Acknowledgments

This work was supported by the European Union FP7 project COMPAS, grant no.
215175.

References

1. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: Model-driven service orchestration. In:
EDOC, IEEE Computer Society (2008) 203–212

2. Zdun, U., Hentrich, C., Dustdar, S.: Modeling process-driven and service-oriented architec-
tures using patterns and pattern primitives. TWEB 1(3) (2007)

3. Skene, J., Emmerich, W.: Engineering runtime requirements-monitoring systems using mda
technologies. In Nicola, R.D., Sangiorgi, D., eds.: TGC. Volume 3705 of Lecture Notes in
Computer Science., Springer (2005) 319–333

4. Chowdhary, P., Bhaskaran, K., Caswell, N.S., Chang, H., Chao, T., Chen, S.K., Dikun, M.J.,
Lei, H., Jeng, J.J., Kapoor, S., Lang, C.A., Mihaila, G.A., Stanoi, I., Zeng, L.: Model driven
development for business performance management. IBM Systems Journal 45(3) (2006)
587–606

5. Völter, M., Stahl, T.: Model-Driven Software Development: Technology, Engineering, Man-
agement. Wiley (2006)

6. Bank for International Settlements: Basel II: International Convergence of Capital Mea-
surement and Capital Standards: A Revised Framework - Comprehensive Version. http:
//www.bis.org/publ/bcbsca.htm (June 2006) [accessed in February 2010].

7. Congress of the United States: Public Company Accounting Reform and Investor Pro-
tection Act (Sarbanes-Oxley Act), Pub.L. 107-204, 116 Stat. 745. http://www.gpo.
gov/fdsys/pkg/PLAW-107publ204/content-detail.html (July 2002) [ac-
cessed in February 2010].

8. Holmes, T., Zdun, U., Dustdar, S.: MORSE: A Model-Aware Service Environment. In:
Proceedings of the 4th IEEE Asia-Pacific Services Computing Conference (APSCC), IEEE
Computer Society Press (December 2009) 470–477

9. Organization for the Advancement of Structured Information Standards: Web service busi-
ness process execution language version 2.0. OASIS Standard, OASIS Web Services Busi-
ness Process Execution Language (WSBPEL) TC (January 2007) [accessed in February
2010].

10. Feather, M., Fickas, S., van Lamsweerde, A., Ponsard, C.: Reconciling system requirements
and runtime behavior. In: Software Specification and Design, 1998. Proceedings. Ninth
International Workshop on. (Apr 1998) 50–59

11. Michelson, B.: Event-Driven Architecture Overview: Event-Driven SOA Is Just
Part of the EDA Story. http://www.omg.org/soa/Uploaded%20Docs/EDA/
bda2-2-06cc.pdf (February 2006) [accessed in February 2010].

12. International Organization for Standardization: ISO/IEC 19501:2005 information technol-
ogy – open distributed processing – unified modeling language (UML), v1.4.2. http://
www.omg.org/cgi-bin/doc?formal/05-04-01 (April 2005) [accessed in Febru-
ary 2010].

13. The Apache Software Foundation: Apache Subversion. http://subversion.
apache.org (2000) [accessed in February 2010].

14. The Eclipse Foundation: Eclipse modeling framework. http://www.eclipse.org/
modeling/emf/ (2002) [accessed in February 2010].

http://www.bis.org/publ/bcbsca.htm
http://www.bis.org/publ/bcbsca.htm
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html
http://www.omg.org/soa/Uploaded%20Docs/EDA/bda2-2-06cc.pdf
http://www.omg.org/soa/Uploaded%20Docs/EDA/bda2-2-06cc.pdf
http://www.omg.org/cgi-bin/doc?formal/05-04-01
http://www.omg.org/cgi-bin/doc?formal/05-04-01
http://subversion.apache.org
http://subversion.apache.org
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

15. The Elver Project: Teneo. http://www.eclipse.org/modeling/emf/
?project=teneo (2005) [accessed in February 2010].

16. The Eclipse Foundation: Eclipse persistence services project (eclipselink). http://www.
eclipse.org/eclipselink (2008) [accessed in February 2010].

17. PostgreSQL Global Development Group: PostgreSQL. http://www.postgresql.
org (1997) [accessed in February 2010].

18. The Apache Software Foundation: Apache CXF: An Open Source Service Framework.
http://cxf.apache.org [accessed in February 2010].

19. The Apache Software Foundation: Apache Maven. http://maven.apache.org [ac-
cessed in February 2010].

20. International Telecommunication Union: ISO/IEC 9834-8 information technology – open
systems interconnection – procedures for the operation of OSI registration authorities: Gen-
eration and registration of universally unique identifiers (UUIDs) and their use as ASN.1 ob-
ject identifier components. http://www.itu.int/ITU-T/studygroups/com17/
oid/X.667-E.pdf (September 2004) [accessed in February 2010].

21. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci.
Comput. Program. 20(1-2) (1993) 3–50

22. Cohen, D., Feather, M.S., Narayanaswamy, K., Fickas, S.S.: Automatic monitoring of soft-
ware requirements. In: ICSE ’97: Proceedings of the 19th international conference on Soft-
ware engineering, New York, NY, USA, ACM (1997) 602–603

23. Ahluwalia, J., Krüger, I.H., Phillips, W., Meisinger, M.: Model-based run-time monitoring
of end-to-end deadlines. In Wolf, W., ed.: EMSOFT, ACM (2005) 100–109

24. Sriplakich, P., Blanc, X., Gervais, M.P.: Supporting transparent model update in distributed
case tool integration. In Haddad, H., ed.: SAC, ACM (2006) 1759–1766

25. Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W., Schwinger, W.: To-
wards a semantic infrastructure supporting model-based tool integration. In: GaMMa ’06:
Proceedings of the 2006 international workshop on Global integrated model management,
New York, NY, USA, ACM (2006) 43–46

26. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Seidl, M., Schwinger, W., Wim-
mer, M.: AMOR – towards adaptable model versioning. In: 1st International Workshop
on Model Co-Evolution and Consistency Management, in conjunction with MODELS ’08.
(2008)

27. Brosch, P., Langer, P., Seidl, M., Wimmer, M.: Towards end-user adaptable model ver-
sioning: The by-example operation recorder. In: CVSM ’09: Proceedings of the 2009 ICSE
Workshop on Comparison and Versioning of Software Models, Washington, DC, USA, IEEE
Computer Society (2009) 55–60

28. Murta, L., Corrêa, C., Jo a.G.P., Werner, C.: Towards Odyssey-VCS 2: Improvements over
a UML-based version control system. In: CVSM ’08: Proceedings of the 2008 international
workshop on Comparison and versioning of software models, New York, NY, USA, ACM
(2008) 25–30

29. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning approaches. IJWIS
5(3) (2009) 271–304

30. Brosch, P., Seidl, M., Wieland, K., Wimmer, M., Langer, P.: We can work it out: Collab-
orative conflict resolution in model versioning. In: ECSCW 2009: Proceedings of the 11th
European Conference on Computer Supported Cooperative Work, Springer (2009) 207–214

http://www.eclipse.org/modeling/emf/?project=teneo
http://www.eclipse.org/modeling/emf/?project=teneo
http://www.eclipse.org/eclipselink
http://www.eclipse.org/eclipselink
http://www.postgresql.org
http://www.postgresql.org
http://cxf.apache.org
http://maven.apache.org
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf

	Monitoring and Analyzing Service-based Internet Systems through a Model-Aware Service Environment
	Ta'id Holmes, Uwe Zdun, Florian Daniel, and Schahram Dustdar
	1 Introduction
	2 A Model-Aware Service Environment in Compliance Monitoring and Analysis
	3 Model-Aware Repository and Service Environment
	3.1 The Morse Approach for Service-based Internet Systems

	4 Case Study: Compliance to Regulations
	5 Performance and Scalability Evaluation
	6 Related Work
	7 Conclusion

