
Provisioning of Complex Adaptive Services

L. Baresi, F. Daniel, A. Maurino,
S. Modafferi, E. Mussi, B. Pernici

Politecnico di Milano
P.zza L. da Vinci 32
20133 Milano, Italy

mussi@elet.polimi.it

D. Bianchini, V. De Antonellis
Università degli Studi di Brescia

Via Branze 38
25123 Brescia, Italy

ABSTRACT
Service oriented computing is becoming the standard paradi-
gm to support the creation of applications composed of e-
services selected from a registry. Nowadays, we are assisting
to the proliferation of standardized approaches to describe
such services, but there is the general agreement of distin-
guishing the general characteristics of services from the char-
acteristics linked to service invocation. In many case, the
selection of services is static and based on matching tech-
niques to retrieve the most appropriate service.

The paper presents the MAIS architecture to provide high-
ly adaptive e-services in a mobile and interactive environ-
ment. It focuses on service selection and invocation, context-
aware orchestration, and mechanisms for managing user in-
teraction in a service oriented architecture. We propose
adaptivity at different levels: at the process level, but also
at the level of the selection of a concrete service given an ab-
stract description. Selection is based on suitable ontologies
and can consider the actual context and user characteristics
to retrieve the most suitable services. The paper describes
the main components of the architecture and exemplifies
them on a simply process for a shipping company.

Keywords
Novel architectural approaches for service-oriented comput-
ing, Service and Mobile Computing Service description and
advertisement, Service discovery and selection, Location-
based services, Mobile e-businesses, Core service activities
and technologies

1. INTRODUCTION
The emerging paradigm of service oriented computing [?]

supports the creation of applications by composing e-services
selected from a registry among a variety of available ser-
vices with given characteristics. E-services may be invoked
directly by the application in which they are used. Essen-
tial to this paradigm is the definition of e-services using a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

standardized approach; in the literature, proposals of service
description languages, such as WSDL, of service ontologies,
such as in AgFlow [22], or of semantic web services [1] are
all going towards the direction of separating general charac-
teristics of services from the characteristics linked to service
invocation with a given protocol. In the above mentioned
approaches, service selection is generally static, assuming
matching techniques to retrieve the most appropriate ser-
vice. In VISPO [2], the authors introduced the concept of
concrete and abstract services in the context of process def-
inition, allowing the designer to specify the process in terms
of abstract services and then providing an invocation envi-
ronment to select the most appropriate service. In the se-
lection and execution, they evaluated the availability of the
selected process and provided mechanisms for substituting
services whenever they are not available.

However, both in VISPO and AgFlow, where service un-
availability is considered at run time, the assumption is that,
beyond unavailability of services, the context of invocation
is always the same. This assumption cannot be considered
valid anymore in applications running in a very variable en-
vironment in terms both of architecture and its components.
In such environments, for example, in the case of mobile
information systems [13], services invocation may vary de-
pending on their availability over the network, on param-
eters of devices on which they are invoked that influence
their quality, and on the characteristics of the networking
infrastructure. In addition, e-services might be used in the
process several times and their execution environment might
vary over time.

The goal of this paper is to propose the MAIS architec-
ture, along with its mechanisms, to design and execute com-
plex services composed of adaptive services. We propose
adaptivity at different levels: at the process level, at the
level of selection of a concrete service for a given abstract
service, in the user environment. We support service selec-
tion with an enhanced UDDI registry, storing descriptions of
abstract and concrete services, including information about
quality parameters on the provider side. The proposal has
been developed in the MAIS (Multichannel Adaptive Infor-
mation Systems) Project [20].

The rest of this paper is organized as follows. Section 2
presents a running example of mobile information systems
for a shipping company to provide motivations for the as-
pects discussed in the rest of the paper. Section 3 describes
the MAIS functional architecture, focusing on orchestration
and concrete service selection and invocation. It also intro-
duces the basic ontology of services of the MAIS Registry.

LOOP

Route.Calculate

Traffic.Check

Route.Replan

OnMessage=”Delivery complete”

Delivery.Notification

Delivery.ReceiveWork

OnMessage=”Udpate route”

Loop Evaluation

Pick Evaluation

Loop.UpdateCondition Loop.UpdateCondition

Figure 1: Workflow of shipping assignment and ex-
ecution phases

Finally, it discusses a mechanism for decoupling e-service
invocation from the design of the user environment in terms
of its interaction with the system, based on an extended
WebML model [9]. Section 4 discusses our proposal in rela-
tion to the state of the art.

2. THE SHIPPING COMPANY
This section presents the running example used through-

out the paper. It describes the typical problems of a shipping
company that wants to optimize the delivery of packages.
We concentrate on a simplified version of the process to de-
liver goods and imagine that the need for optimization and
adaptation of the delivery procedure to the context/profile
leads to enacting the process in several different ways.

ShipEveryWhere, our shipping company, has a unique pro-
cess to support the delivery of all packages. for simplicity,
we consider a single item and we also assume that he process
starts after assigning the item to the best vehicle. The pro-
cess includes the creation and update of the route followed
by the vehicle. Figure 1 shows the process that oversees all
the phases. Notice that we use a dot notation to name activ-
ities: The first part identifies the service, while the second
part specify the operation.

The process starts with the assignment of the task to the
vehicle that carries the item (service Delivery, operation Re-
ceive Work). The ShipEveryWhere control center, through
an appropriate user interface, assigns the item and relative
delivery information to the selected driver. According to the
destination and dimension of the item, the vehicle can be a
truck for destination longer than 200 kilometers, a van for
destination between 10 and 200 kilometers and bulky pack-
ages, and a motorbike for close destinations, i.e, less than 10
kilometers and small boxes. Each vehicle is equipped with
a device to interact with the control center via a GPRS in-

terface. In particular, each truck hosts a laptop; vans have
PDAs, and who drives a motorbikes uses a smart-phone.
Vehicles are equipped with different devices because of the
different uses and the room on board. This choice, however,
implies that the enactment of the process varies and must
cope with the device on the actual vehicle.
After the assignment phase the driver calculates the best
route to deliver the item (service Route, operation Calcu-
late). This activity varies according to capabilities of the
device hosted by the vehicle and can be done in different
ways. For example, the control center can send required
data, the vehicle can use local (context-dependent) services
to discover traffic conditions and calculate the best option,
or drivers can decide based on their own experience.
While driving towards destination, the driver can either no-
tify the control center that the item is delivered (service
Delivery, operation Notification) or request the current sit-
uation of traffic condition and consequently replan the route.
The traffic update can be required by the driver, in case of
heavy traffic on the selected route or by the control center
to notify the driver of congested traffic conditions on the
route (message Update Route of Pick activity). The selec-
tion of the actual services that detect traffic conditions and
replan the route depends on the driver’s profile (e.g. the
used device) and the specific context in which the request
is place (e.g. the availability or absence of a GPRS network
can affect the set of available alternatives). If the driver is
not able to connect to the control center, due the absence
of GPRS signal or because the bandwidth is too low, he
cannot connect to the TIER service (Traffic Information on
European Roads). If the vehicle cannot use GPRS channel
(or if the driver declares in his profile that he does not want
to pay for it) the replanning must be done locally (that is,
manually) with the information on board or by using the
driver’s experience. In this last case, data must be supplied
by the driver by means of a special-purpose user interface.

3. FUNCTIONAL ARCHITECTURE
This section introduces the MAIS architecture, its com-

ponents, and the relationships among them.

3.1 MAIS services
Before introducing the actual architecture, we must set

the jargon used in the paper and clarify that we distinguish
between:

• concrete services, which are directly invocable services,
with public WSDL interfaces and bindings to specific
implementations;

• abstract services, which are services that cannot be
invoked directly. These abstract descriptions are ex-
tracted – by means of integration mechanisms – from a
set of existing concrete services clustered on the basis
of their functional similarity (see [4]). Their capabil-
ities, represented using a WSDL interface, are repre-
sentative of the capabilities of services in the cluster.
In particular, the set of defined capabilities is “mini-
mal” in that, for example, the set of operations in the
abstract service interface are only those common to
all the services in the cluster. The designer can possi-
bly force further capabilities considered relevant to the
cluster, for example, because they are present in most
services of the cluster. In any case, proper mapping

rules between the capabilities in the abstract service
and those in the corresponding concrete services must
be defined. They are defined on operation names and
on I/O entity names and are tables (one for each ab-
stract capability).

Services are characterized by means of semantic informa-
tion about functional, context, and quality aspects:

• The functional description is given in terms of the op-
erations that the service performs, the input entities
it requires for the execution, and the output entities
it produces after execution. Constraints on input and
output entities can be specified;

• The context description is given in terms of condi-
tions under which the service is provided and used.
In particular, it refers to the Channel used for service
provisioning (modeled by means of Device, Network,
NetworkInterface and ApplicationProtocol), Location
and Time information;

• the quality of service is expressed by means of a set of
standard quality dimensions, imposed by the channels
used for service delivery and guaranteed by the service
provider; each dimension is described by a name and
a range of admissible values.

The language proposed for describing services is WSDL
properly augmented to represent specific semantic informa-
tion. In particular, context information and constraints
about input and output entities are expressed by means
of pre- and post-conditions, i.e., logical expressions (repre-
sented as conjunction of pairs <element,value>) that must
be satisfied before (pre-conditions) and verified after the ser-
vice execution (post-conditions).

3.2 MAIS architecture
Figure 2 shows the MAIS functional architecture and the

relationships among its modules. The architecture is com-
posed of six modules that cooperate to manage and provide
complex e-services in a context aware manner.

The architecture considers two different classes of users:
Designers, who create and publish the MAIS services, and
End Users, who use the architecture to find and use the
published services.
While Designers access directly the platform through the
MAIS Registry, the access for End Users is mediated by two
modules, the User Environment and the Platform Invocator.
The goal of these two modules is to provide the functionality
that allow End Users to interact with the MAIS architec-
ture. These features are not only limited to the search and
invocation of services, but also comprise the management of
tasks related to the execution of complex services.
The Platform Invocator represents the point of contact be-
tween End Users and the MAIS architecture and hides the
complexity of the architecture. Its interface exports a se-
ries of operations, which allow to interact programmatically
with the architecture, performing operations like: i) search
published services in the MAIS Registry ii) execute the cho-
sen services, and iii) manage the interaction with End Users
during the execution of a complex service.
Obviously, such components prevent End Users from using
the MAIS architecture in an interactive way. For this rea-
son, End Users interact through the User Environment and

not directly with the Platform Invocator. The User Environ-
ment provides the graphical interface for the End Users who
want to interact with the MAIS architecture. What distin-
guishes this module from a simple static GUI is the ability
to dynamically generate the user interface with respect to
the context in which End Users are (i.e., device, available
communication protocols, user profile). The User Environ-
ment provides the same functionality as those exported by
the Platform Invocator but through a graphical and context-
aware interface. The information about the context is taken
from the MAIS Reflective Architecture Interface.

This module represents the access point to the reflective
middleware and allows the other modules of the architecture
to observe and modify the execution context and capture
relevant events from the reflective middleware. These events
provide useful information to the architecture for adaptive
service provisioning. (i.e., QoS degradation or battery level
of a mobile device).

Once End Users have selected and invoked a service us-
ing the User Environment and the Platform Invocator, the
management of such an execution is performed by the core
modules of the MAIS architecture. These modules are: i)
the Process Orchestrator for managing the execution of com-
plex concrete services and ii) the Concrete Service Invocator
for instantiating the services and executing the calls of con-
crete services operations.

The Process Orchestrator is used when a complex ser-
vice is executed and its process has to be orchestrated. It
manages the process state and, step by step, interacts with
the Concrete Service Invocator for invoking each operation
specified in the workflow definition. The Process Orchestra-
tor invokes abstract operations using abstract parameters;
it is up to the Concrete Service Invocator to translate ab-
stract parameters into concrete ones and invoke the concrete
operation compatible with the abstract one. Another task
performed by the Process Orchestrator is the delivery of pro-
cess activities to End Users. Process activities are defined
by the Designer during the definition of the workflow and
delivered to users at run time. In order to perform this task,
the Process Orchestrator uses specific capabilities provided
by the Concrete Service Invocator.

As stated before, besides the orchestrator, there is an-
other module that is needed to invoke concrete services: the
Concrete Service Invocator. This module is in charge of
managing the invocation of services and delivering activities
(tasks) to End Users.

The Concrete Service Invocator delivers activities to the
assigned End User and, in the case of a service invocation,
it can:

• Start the invocation of services. When the Platform
Invocator asks for a service invocation, the Concrete
Service Invocator invokes the right concrete service af-
ter the interaction with the registry, if needed.

• Invoke abstract operations. This is a sophisticated
functionality used by the Process Orchestrator for in-
voking abstract operations. An abstract service can-
not be invoked and so, an initial phase for selecting
concrete services is needed. During this phase, called
link phase, the Concrete Service Invocator accesses the
MAIS Registry for finding concrete services and eval-
uate their affinity with respect to the abstract ser-
vice (i.e., the request). Once a compatible concrete

M
A

IS
 R

e
fle

ct
iv

e
 A

rc
hi

te
ct

ur
e

 I
n

te
rf

a
ce

Web Services
Implementations

End User

Designer

User Environment

Platform Invocator

Process
Orchestrator

Concrete Service
Invocator

MAIS Registry API

Match Maker

Service
Onthology

Public
UDDI

Registry

Domain
Onthology

Private
UDDI

Registry

Wrapper
Repository

WS Registration
MAIS Registry Access

MRA Access

MAIS Registry Access

Module Invocation

Figure 2: MAIS Functional architecture

service is chosen, the Concrete Service Invocator pro-
ceeds by invoking the concrete operation. The Con-
crete Service Invocator receives as input the param-
eters of the abstract operation, translates them into
the concrete ones, invokes the concrete operation and
then translates the concrete output parameters into
abstract ones. The translation of parameters is per-
formed by using wrappers registered in the MAIS Reg-
istry.

• Invoke concrete service operations. This invocation is
made by accessing directly the concrete implementa-
tions of services and invoking the concrete operation
by passing concrete parameters.

The last module of our architecture is the MAIS Registry.
This module represents the registry of the MAIS architec-
ture and contains suitable descriptions of all published ser-
vices, along with other support information.
Services are published in the MAIS registry that is composed
of: a UDDI registry, where services are registered with asso-
ciated keywords, a domain ontology, where semantic infor-
mation for service input/output annotation is maintained,
and a service ontology, where services and semantic relation-
ships among them are organized in two different layers (con-
crete layer and abstract layer), as explained latter. The rel-
evance and benefits of a combined architecture “UDDI reg-
istry plus ontology” have been already motivated in [12] for
service semantic match-making. Additional requirements in
our work are due to the fact that the MAIS system is in-
tended to support service provisioning that can be readily
adapted to changes in the user context.
The main issue in MAIS is how to quickly find generic ser-
vices, which we call abstract services, with the required ca-
pabilities that can be actually provided by several specific
existing services, called concrete services. Abstract services

are intended to shorten the way towards a variety of possible
alternative concrete services that can be invoked. For this
purpose, we have defined the MAIS service ontology orga-
nized into concrete services, abstract services and semantic
relationships among them.
The service ontology is organized in two layers: in the con-
crete layer, concrete services are grouped into clusters ac-
cording to identified semantic similarity relationships; in
the abstract layer, abstract services are possibly related by
means of semantic generalization or part-of relationships.
An association link is maintained between each abstract ser-
vice and the corresponding cluster.
During process execution, the MAIS Registry is directly ac-
cessed by the Concrete Service Invocator to find the concrete
services that must be invoked. The Platform Orchestrator,
which supports the process evolution, sends to the Concrete
Service Invocator a sequence of service requests: the Con-
crete Service Invocator matches each request with abstract
services stored into the service ontology [4]. When it finds
the desired one, available concrete services belonging to the
corresponding cluster are found, mapping rules are applied
and services are proposed to the Concrete Service Invocator.
At this point, context and quality requirements are checked
to filter the proposed concrete services. If no concrete ser-
vices in the cluster satisfy the requirements, the Concrete
Service Invocator returns to the abstract layer and select
other abstract services related to the previous one by ex-
ploiting the semantic relationships. The service ontology
can be also exploited directly by users accessing the MAIS
Registry for searching services by functionality.

The MAIS architecture also comprises a Match Maker
component to allow for sophisticated navigation of the reg-
istry. Besides providing basic navigation functionality, it
implements a set of operations for affinity evaluation for
comparing the descriptions of services. The Match Maker,

along with the MAIS Registry, supports functional, non-
functional, and behavioral evaluation of compatibility.

3.3 User Environment
In this section we switch temporarily from our service-

centered view to a more user-centered view and present a
conceptual model of a possible web-based user interface pro-
viding interaction facilities.
As this is still ongoing work, we deliberately chose a con-
ceptual modeling approach, which allows us to ignore many
of the low-level implementation-related issues without loos-
ing expressive power. In particular, in this section we make
use of WebML, which is a well established visual notation
for the conceptual design of data-intensive Web applications
and has recently been extended with new primitives also
supporting the integration of Web services and thus suits
out needs.

3.3.1 The Web Modeling Language
WebML is widely known for being an intuitive visual lan-

guage for specifying the structure of data-intensive Web ap-
plications and the organization of contents in one or more
hypertexts [9]. However, in a certain sense, it is even more
than yet another specification language. Indeed, it can also
be considered a full design process consisting of two main ac-
tivities, which represent incremental steps towards the final
application:

• Data Design. The WebML Data Model represents
the basis for the overall modeling process and adopts
the Entity-Relationship (ER) primitives for represent-
ing the organization of the application data. Its funda-
mental elements are therefore entities, attributes and
relationships.

• Hypertext Design. The WebML Hypertext Model
allows describing how contents, specified by means of
the ER data schema, are published into the application
hypertext, the so-called site view. Site views are struc-
tured by areas, pages are the actual content containers
made of content units. They are directly associated
with data entities and, by means of specific selector
conditions, publish content within pages. Besides con-
tent units, operation units provide support for content
management operations, set and get units allow ac-
cessing session variables and entry units model HTML
input forms. Units and pages are interconnected by
links, transporting or not parameters and describing
user navigation. Figure 3 shows a graphical summary
of core WebML units.

Personalization of contents and services with respect to
users is achieved by modeling users and their roles as data.
Personalization may occur along two different dimensions:
customized contents with respect to user identy and tailored
hypertext structure with respect to groups the user belongs
to (e.g. guest, adiministrator). The first is based on rela-
tionships between users and content entities at data level,
the latter requires designing alternative site views for each
user group.
Site views may also serve the purpose of expressing alter-
native forms of content organizations on different devices
for the purpose of multi-channel deployment. Each site view
may cluster information and services at the granularity most

Entity
[conditions]

Data unit Multidata unit

Entity
[conditions]

Index unit

Entity
[conditions]

Entry unit

Create

Entity
<param := value>

Delete

Entity
[conditions]

Modify

Entity
[Conditions]

<param := value>

Connect

Relationship

Disconnect

Relationship

Set unit

Parameter

Get unit

Parameter

Content units

Operation units

Units for accessing global session parameters

Figure 3: Summary of core WebML units.

suitable to a particular class of devices or communication
protocol.
Yet WebML does not provide any delivery mechanism, nor
does it depend on the particular deployment language cho-
sen for application delivery. Its visual representation, though,
is mapped on an equivalent XML-based textual representa-
tion that can be processed by automatic code generation
tools, such as the WebRatio Site Development Studio.

4. RUNNING EXAMPLE
After introducing the main components of the MAIS ar-

chitecture, this section exemplifies their behavior with re-
spect to the shipping company example illustrated in Sec-
tion 2.
The execution of the process specification depicted in Figure
1 is up to the Process Orchestrator. Its main tasks are: i)
deciding when to invoke an abstract operation and ii) con-
trolling the link phase of the Concrete Service Invocator in
order to bind the choice of concrete services to the execution
context.
In this example, the choice of which operation to invoke is
very simple and only depends on the process specification.
The orchestrator selects an abstract operation and uses the
Concrete Service Invocator to invoke it. For instance, in the
case study, the orchestrator waits until a message triggers
activity ReceiveWork. When this happens, the orchestrator
invokes the Calculate abstract operation, notifies the cal-
culated plan to the driver and then waits for other incom-
ing messages. If an Update Route message is notified, the
orchestrator invokes the Check and Replan abstract opera-
tions and then waits again. If a Delivery complete message
is notified, the orchestrator invokes the abstract operation
Notification and terminates the process.
More interesting is the managing of the link phase. As stated
in Section 2, there are various concrete services that provide
operations for Checking, Calculating or Replanning and the
selection of the suitable concrete services depends on the
execution context, like, for example, the localization of the
vehicle. A Driver continuously change his position and ev-
ery time that the orchestrator needs to invoke an abstract

operation for checking traffic or planning the route, it must
be sure that the concrete service that will perform such op-
eration covers the geographic area where the vehicle is. This
is done by forcing the link phase before invoking the opera-
tions Check or Replan.
The Concrete Service Invocator is in charge of : i) the selec-
tion of compatible concrete services and ii) the invocation of
concrete operations. In our running example, the Concrete
Service Invocator is also responsible for delivering messages
between Process Orchestrator and Platform Invocator.
Initially, the Process Orchestrator requires that the abstract
service Route, which contains the abstract operation Calcu-
late, be linked. The Concrete Service Invocator searches
the MAIS Registry for selecting concrete services that are
compatible to the abstract service Route. This search is
performed by considering constraints derived from the exe-
cution context, like the geographic position of the vehicle or
the minimum GPRS bandwidth required. If it only consid-
ered geographical constraints, the Concrete Service Invoca-
tor would select concrete services that offer a route service
that covers the geographic area in which the driver is. After
the research phase, the Concrete Service Invocator chooses
the most suitable service among selected ones. This can be
done, for example, by choosing the service that offers the
widest GPRS bandwidth.

After executing the link phase, the Process Orchestrator
can invoke the operation Calculate on the linked abstract
service by sending the invocation request and related ab-
stract parameters to the Concrete Service Invocator . The
Concrete Service Invocator transforms the abstract param-
eters into concrete parameters by means of proper wrappers
and then invokes the operation on the previously selected
concrete service. Returned parameters are also converted
by means of the same wrapper and sent back to the orches-
trator.

If the Process Orchestrator invokes the operation Replan
on the previously linked abstract service Route, the Con-
crete Service Invocator performs such an invocation on the
previously chosen concrete service or, at least, on a con-
crete service belonging to the same set of selected concrete
services. This behavior implies that, if the Process Orches-
trator needs to use services with a particular geographical
localization, it has to perform the link operation every time
that the vehicle changes its position.

A particular case as to the link process concerns the ab-
stract service Delivery , which is used by the orchestrator for
invoking the operation Notification. If we suppose that there
is only one concrete service that realizes such an operation
(i.e. the ShipEveryWhere concrete service) there is no need
for the Concrete Service Invocator to search the MAIS Reg-
istry for selecting the proper concrete service. The search is
avoided by the Process Orchestrator that performs a special
link over the Concrete service Invocator in order to perma-
nently bind the abstract service Delivery with the concrete
service ShipEveryWhere.

As stated before, besides the functionality related to ser-
vice invocation, the Concrete Service Invocator is responsi-
ble for delivering messages between the Process Orchestrator
and the Platform Invocator. When the process begins, the
driver must be informed about the task and subsequently
about the route he has to follow. This is done by the Pro-
cess Orchestrator that uses the functionality of the Concrete
Service Invocator for delivering messages to the Platform In-

vocator and implicitly to the driver. The same thing is per-
formed by the driver who uses the Platform Invocator, via
the User Environment, to notify Update Route or Delivery
Complete messages to the orchestrator.

The Platform Invocator represents the access point to the
MAIS architecture. It notifies allocated tasks and related
routes to the driver; this is done using an activity list. The
Platform Invocator manages a list which contains all the ac-
tivities (tasks, and advices, for example) assigned to drivers.

When a driver accesses the architecture via the Platform
Invocator, he reads the assigned task, views the assigned
route, and performs the delivery to the correct destination.
If during the delivery process the driver decides to recalcu-
late the route, he has to notify the decision to the archi-
tecture sending an Update route message via the Platform
Invocator. The Process Orchestrator receives this message
and reacts consequently. The same thing must be done by
the driver when he completes the delivery.

Figure 4 shows a portion of the service ontology of ShipEv-
eryWhere. We have four abstract services associated with
the corresponding clusters of concrete services. Let us sup-
pose that

• The Concrete Service Invocator receives a request of
a service to replan route or to obtain traffic informa-
tion from truck-A with a laptop that uses the GPRS
network and requires an high bandwidth (greater than
200Kbps);

• The location scenario is the European one (context
information).

The Concrete Service Invocator exploits the functional match-
ing mechanism to find the abstract services Route Planning
and Traffic. In the first case, it has to choose between the
concrete services PlanRoute and Easy Europe Travel: For
both these services the location is acceptable and both of
them are provided on the GPRS network, but only the
second one has an acceptable bandwidth value. So only
the concrete service Easy Europe Travel is returned to the
Concrete Service Invocator. The selection of a concrete ser-
vice for the abstract service Traffic is similar. Suppose now
that the same request is sent from the motorbike-D, which
is equipped with a smartphone that only uses the UMTS
network. The connection to the concrete services Easy Eu-
rope Travel and SocietàAutostrade is not possible, since they
are only provided on GPRS networks. On the other hand,
services PlanRoute and TIER are also supplied on UMTS net-
works and are proposed to the Concrete Service Invocator.
Finally, let us suppose that we need a planning with cost
evaluation: in this case, functional requirements concern a
planning operation that returns the cost as output parame-
ter. In our example, the Concrete Service Invocator uses the
functional matching algorithm to obtain the abstract service
Planning with Cost, for which, however, only the concrete
service Euro Itinerary is acceptable, since for the service
Milan-Rome Map&guide the location is too restrictive. So, if
a GPRS network is not available, we have two solutions: the
Concrete Service Invocator does not return any concrete ser-
vices as searching result or it exploits the is-a relationship
and presents as result the service PlanRoute associated with
the more general abstract service Route Planning. This
solution could be obtained also by means of a negotiation
process.

Delivery Service

(1) [ack] = DeliveryNotification()

(2) [ack] = receiveWork()

Route Planning Service

(1) [item] = replan(start,end)
(2) [item] = calculate(start,end)

Traffic Service

(1) [trafficInfo] = check(region)

Planning with Cost Service

(1) [item,cost] =
planWithCost(start,end)

PlanRoute

{Channel.Network={GPRS,UMTS},
Bandwidth={<100Kbps}}

Milan-Rome Map&guide

{Channel.Network={GPRS,UMTS},
Bandwidth={<200Kbps},
Location={Italy}}

Euro Itinerary

{Channel.Network={GPRS},
Bandwidth={unbounded},
Location={Europe}}

TIER

{Channel.Network={GPRS,UMTS},
Bandwidth={<100Kbps}}

Easy Europe Travel

{Channel.Network={GPRS},
Bandwidth={unbounded},
Location={Europe}}

ABSTRACT
SERVICES

CONCRETE
SERVICES

is-a

Speedy Delivery

{Channel.Network={GPRS},
Bandwidth={>200Kbps}}

AlphaDel

{Channel.Network={UMTS},
Bandwidth={0-200Kbps}}

SocietaAutostrade On-line

{Channel.Network={GPRS},
Bandwidth={unbounded},
Location={Italy}}

Figure 4: A portion of the service ontology for the running example.

This example shows how the service ontology can be ex-
ploited to enhance adaptive service provisioning, starting
from searching abstract services with required functional ca-
pabilities, then locating groups of suitable concrete services
and finally reducing the number of concrete services on the
basis of context and quality requirements in an adaptive
way.

4.1 Integrating Web Services and WebML
Concerning our scenario of the shipping company ShipEv-

eryWhere, we require primitives capable of modeling inter-
actions with external Web Services, due to the fact that
the MAIS Platform supplies (abstract) Web services, which
may be weaved into the application logic of a particular User
Environment. [5] introduces the required functionality at an
adequate level of abstraction; Figure 5 shows the graphical
rendition of the units used in our example.
The depicted three operations represent just a subset of the
introduced novel operations reflecting the set of WSDL mes-
sage exchange patterns [10], but still enough for our purpose.
The One-way operation serves the purpose of client-initiated
messages, while the Notify operation stands for the inverse
communication direction and thus for service-initiated mes-
sages. Finally, the Request-Response unit represents a syn-
chronous operation initiated by users, with one outbound
message followed by one inbound message. For further de-
tails about Web services integration into WebML please refer
to [5].

One-way

Conversation

Notify

Conversation

Req-Response

Conversation

Figure 5: WebML primitives for Web services inte-
gration.

4.1.1 Data Modeling
The first step in designing the user interface regarding the

van driver in our example consists of modeling the applica-
tion data. Starting from the default WebML sub-schema,
required for user management and personalization, three en-
tities (Van, Package, Route) model the specific application
data. The execution of service-related operations causes im-
plicit update of data. In particular, the operations GetPack-
ageList and GetRoute/NewRoute affect the entities Package
and Route respectively.

4.1.2 Hypertext Modeling
Figure 7, finally, shows the arrangement of a possible hy-

pertext built upon the specified data model and gives an
idea of the complexity masking power of the MAIS Plat-

User

Username
Password
EMail

Group

GroupName
NumberOfUsers

SiteView

SiteViewName

1:1 1:N

1:N 1:N
1:1 1:N

Package

PackageNumber
Destination
Weight
Size

Van

InternalNumber
NumberPlate
Producer
Model
Store

Route

From
Destination
Map
...

1:11:N

Figure 6: Data model for integrating the ShipEvery-
Where service.

Delivery Assistant

Driver Details

Get unit

User
User

Driver Details

Select Van

Van Van

Van Details

H

L

Package List

Package List

Package
[Van2Package]

Route Planner

Route

Route Details

New Route

DeliveryService

Entry unit

D

Complete
Delivery

DeliveryService

Get PackageList

DeliveryService

Get Route

DeliveryService

Figure 7: Hypertext schema of user interface.

form. Only operations exposed by means of abstract MAIS
services are known at the User Environment level, while
all the process orchestration details occur in a completely
transparent manner. The names of used operations are re-
ferred to the user environment and are directly mapped onto
the operations of the process as described in Figure 1: Grey
lines correspond to user-oriented invocations.
The hypertext schema describes the PDA user interface of
the van driver. After a successful login process (not modeled
here), the page Driver Details shows the relative user details
and provides a list of free vans. The driver chooses one of
the vans and, based on the chosen van, he can either get the
list of the loaded packages or get the delivery route for the
freight. Both these operations are performed by means of
calls of the delivery Web service. While visiting the Route
Planner page, the route can even change automatically due
to changing traffic conditions and notified by means of the
notify unit New Route. At the other hand, also the driver
himself can manually invoke the Get Route operation by
means of the entry unit. Once the packages have been de-
livered, the Complete Delivery operation communicates the
successful delivery back to the control center.

5. RELATED WORK
The semantic description of services is very important in

dynamic contexts where different services can offer, com-
pletely or partially, the requested features. The use of a
registry with publish and subscribe capabilities is the usual
way to allow a dynamic search of services. The de-facto stan-
dard for registries is UDDI and nowadays all the semantic
match-makers must be UDDI-compliant. The description of
interfaces by means of WSDL is UDDI-compliant, but it is
not enough to perform useful semantic researches in a ser-
vice registry. On the other hand, the use of rich descriptions,
followed by the OWL-S coalition [1], can raise problems like
the compliancy with UDDI and the delay associated with
searches.
A compromise is described in [12, 22], where the authors pro-
pose a semantic description of services and a match-maker
able to browse a UDDI-compliant registry. Our approach
follows this compromise since the semantic description is
used to improve the degree of freedom in the design of the
business process, but search performances are still accept-
able.
Another important issue as to service provisioning concerns
the definition of languages for Quality of Service (QoS) de-
scriptions. QoS has been the topic of several research and
standardization efforts across different communities [18, 21,
23]. In [15], authors propose a multilayer model to evaluate
quality of services in a dynamically evolving environment.
The adaptivity to the context is a fundamental issue of mod-
ern frameworks for provisioning of services. The adaptation
process can involve or not the user. According to the degree
of user interaction, we can identify three different levels.
At the lower level, adaptivity is focused on the middleware
for service provisioning [7, 16]. In this perspective the na-
ture of the application is weakly considered and often the
user does not know or interact with the adaptation process.
The middle level is related to adaptivity issues on the busi-
ness logic. Here, applications can react to events forwarded
by the lower levels and modify their business logic in or-
der to adapt their behavior with respect to users. Several
systems and approaches have been proposed to extend tra-
ditional workflow management system technology to adap-
tive, Internet-based scenarios: CrossFlow [11] , WISE [14],
MENTOR-LITE [19]. e-FLOW [8] is one of the first re-
search prototypes addressing the issues of specifying, en-
acting, and monitoring composite services; other proposals
include SELFSERV [3] in which services can be composed
and executed in a decentralized way and The Dysco project
[17] that faces the issue of automatic composition.

The top level involves aspects related to user environ-
ments [6]. Applications modify their user interfaces accord-
ing to the client execution context. Automatic transcoding
tools, like WebML [9], are very important in the automatic
generation of multi-channel access systems.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a novel approach for the

provisioning of complex abstract services. The decoupling
of abstract description of services and their actual imple-
mentations is strongly exploited by the MAIS architecture
and it was designed with this purpose in mind. Our service
ontology is defined by looking a compromise between the
richness of the description and its real usability. The defini-

tion of QoS dimensions become the fundamental parameter
for the selection of the best service.
The possibility of dynamic search is already a kind of adap-
tivity. Moreover to increase the flexibility our framework,
we can provide simple services that have to be orchestrated
by the end user or the architecture can hide all details and
present only a value-added (fully orchestrated) service.
The adaptivity is also addressed by using a reflective archi-
tecture, which is able to know and, in some case manage,
the parameters of the distribution channel.
Even if exiting languages give many opportunities, it is nec-
essary to augment some of them. We are now formalizing
these extended languages. The next step will be the imple-
mentation and deployment of the MAIS framework in some
special-purpose settings.

Acknowledgments
This work is partially funded by the Italian MURST-FIRB
MAIS Project (Multi-channel Adaptive Information Systems).

7. REFERENCES
[1] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila,

D. M. D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, T. Payne, and K. Sycara. Daml-s: Web
service description for the semantic web. In In Proc.
of International Semantic Web Conference (ISWC
2002), Chia, Italy.

[2] V. D. Antonellis, M. Melchiori, B. Pernici, and
P. Plebani. A methodology for e-service
substitutability in a virtual district environment. In
Conference on Advanced Information System
Engineering (CAISE 2003), Klagenfurt-Velden,
Austria, June 16-20, 2003.

[3] B. Benatallah, Q. Sheng, and M. Dumas. The self-serv
environment for web services composition. IEEE
Internet Computing, 7(1), 2003.

[4] D. Bianchini, V. D. Antonellis, and M. Melchiori. An
ontology-based method for classifying and searching
e-Services. In Proc. Forum of First Int. Conf. on
Service Oriented Computing (ICSOC 2003), Trento,
Italy, December 15-18 2003.

[5] M. Brambilla, S. Ceri, S. Comai, P. Fraternali, and
I. Manolescu. Model-driven specification of web
services composition and integration with
data-intensive web applications, July 2002. IEEE
Bulletin of Data Engineering.

[6] P. Brusilovky. Adaptive hypermedia. User Modeling
and User Adapted Interaction, 11(1-2):87–100, 2001.

[7] L. Capra, W. Emmerich, and C. Mascolo. CARISMA:
Context-aware reflective middleware system for mobile
applications. IEEE Transactions on Software
Engineering, 29(10):929–945, 2003.

[8] F. Casati and M. Shan. Dynamic and adaptive
composition of e-services. Information Systems, 6(3),
2001.

[9] S. Ceri, P. Fraternali, B. Bongio, S. Comai, and
M. Matera. Designing Data-Intensive Web
Applications. 2002.

[10] M. G. et al. Web Services Description Language
(WSDL) Version 2.0 Part 2: Message Patterns. W3C,
http://www.w3.org/TR/wsdl20-patterns/, November
2003. W3C Working Draft.

[11] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig.
Crossflow: Cross-organizational workflow management
in dynamic virtual enterprises. International. Journal
of Computer Systems Science & Engineering, 15(5),
2000.

[12] T. Kawamura, J. D. Blasio, T. Hasegawa,
M. Paolucci, and K. Sycara. Preliminary report of
public experiment of semantic service matchmaker
with UDDI business registry. In In Proc. of
International Conference on Service oriented
Computing ICSOC, volume 2910/2003, pages 208–224,
Trento, italy, 2003. Lecture Notes in Computer
Science Springer-Verlag Heidelberg.

[13] J. Krogstie, K. Lyytinen, A. L. Opdahl, B. Pernici,
K. Siau, and K. Smolander. Research areas and
challenges for mobile information systems. Int. J.
Mobile Communication, in press.

[14] A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler.
The WISE approach to electronic commerce.
International Journal of Computer Systems Science &
Engineering, 15(5), 2000.

[15] C. Marchetti, B. Pernici, and P. Plebani. A quality
model for multichannel adaptive information systems.
In In proc. of WWW04 Conf., alt. track on Web
Services, 2004.

[16] N. Parlavantzas, G. Coulson, and G. Blair. A resource
adaptation framework for reflective middleware. In In
Proc. of International Middleware Conference,
Workshop, pages 163–168, Rio de Janeiro, Brazil,
2003.

[17] G. Piccinelli and L. Mokrushin. Dynamic e-service
composition in dysco. In In Proc. of Int. Workshop on
Distributed Dynamic Multiservice Architecture, at
ICDCS, Phoenix, Arizona, USA, 2001.

[18] S. Ran. A model for web services discovery with qos.
In ACM SIGecom Exchanges, volume 4(1), 2003.

[19] G. Shegalov, M. Gillmann, and G. Weikum.
XML-enabled workflow management for e-services
across heterogeneous platforms. VLDB Journal, 10(1),
2001.

[20] The MAIS Project Team. The MAIS Project. In
International Conf. on Web Information Systems
Engineering, Roma, Italy, Dec. 2004.

[21] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam,
and Q. Z. Sheng. Quality driven web services
composition. In In Procȯf Conference on World Wide
Web. ACM Press, 2003.

[22] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Tqos-aware
middleware for web services composition. IEEE Trans.
on Software Engineering, 30(5), May 2004.

[23] J. Zinky, D. Bakken, and R. Schantz. Architectural
support for quality of service for corba objects. In
Theory and Practice of Object Systems, volume 3(1),
1997.

