
ResEval Mash:
A Mashup Tool for Advanced Research Evaluation

Muhammad Imran, Felix Kling, Stefano Soi, Florian Daniel,
Fabio Casati and Maurizio Marchese,

University of Trento, Via Sommarive 5, 38123, Trento, Italy

lastname@disi.unitn.it

ABSTRACT
In this demonstration, we present ResEval Mash, a mashup
platform for research evaluation, i.e., for the assessment of
the productivity or quality of researchers, teams, institu-
tions, journals, and the like – a topic most of us are ac-
quainted with. The platform is specifically tailored to the
need of sourcing data about scientific publications and re-
searchers from the Web, aggregating them, computing met-
rics (also complex and ad-hoc ones), and visualizing them.

ResEval Mash is a hosted mashup platform with a client-
side editor and runtime engine, both running inside a com-
mon web browser. It supports the processing of also large
amounts of data, a feature that is achieved via the sensible
distribution of the respective computation steps over client
and server. Our preliminary user study shows that ResE-
val Mash indeed has the power to enable domain experts to
develop own mashups (research evaluation metrics); other
mashup platforms rather support skilled developers. The
reason for this success is ResEval Mash’s domain-specificity.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous; D.1 [Softwa-
re]: Programming Techniques

General Terms
Design, Experimentation

1. INTRODUCTION
Mashups are typically simple web applications (most of

the times consisting of just one single page) that, rather than
being coded from scratch, are developed by integrating and
reusing available data, functionalities, or pieces of user in-
terfaces accessible over the Web. Mashup tools, i.e., online
development and runtime environments for mashups, typi-
cally aim to enable also non-programmers to develop own
applications. Yet, similar to what happened in web service
composition, the mashup platforms developed so far either
expose too much functionality and too many technicalities
so that they are powerful and flexible but suitable only for
programmers, or only allow compositions that are so simple
to be of little use for most practical applications. For exam-
ple, mashup tools typically come with SOAP services, RSS
feeds, UI widgets, and the like. Non-programmers simply
do not know how to use these and what to do with them.

Copyright is held by the author/owner(s).
WWW2012, April 16-20, 2012, Lyon, France.
.

We believe that the heart of the problem is that it is
impractical to design tools that are generic enough to cover
a wide range of application domains, powerful enough to en-
able the specification of non-trivial logic, and simple enough
to be actually accessible to non-programmers. At some
point, we need to give up something. In our view, this some-
thing is generality. Giving up generality in practice means
narrowing the focus of a design tool to a well-defined domain
and tailoring the tool’s development paradigm, models, lan-
guage, and components to the specific needs of that domain
only.

Domain-specific development instruments are tradition-
ally the object of domain-specific modeling (DSM) [4] and
domain-specific languages (DSLs) [5], yet they typically tar-
get developers, with only few exceptions. Costabile et al. [1],
for instance, successfully implemented a DSM-based tool en-
abling end user development in the context of a specific com-
pany and technological framework. Given the huge techno-
logical diversity on the Web, however, mashup tools are still
too complex, and non-programmers are not able to manip-
ulate the provided compositional elements [6] (e.g., Yahoo!
Pipes comes with web services, RSS feeds, regular expres-
sions, and the like). Web service composition approaches
like BPEL are completely out of reach.

In this paper we present ResEval Mash i.e., a domain-
specific mashup tool, which we specifically developed for the
domain of research evaluation. The development of complex
evaluation metrics that go beyond the commonly adopted h-
index is usually still a complex and manual task that is not
adequately supported by software instruments. In fact, com-
puting an own metric might mean extracting, combining,
and processing data from multiple sources, implementing
new algorithms, visually representing the results, and sim-
ilar. The Web of Science (http://scientific.thomson.
com/products/wos/) by Thomson Scientific, Publish or Per-
ish (http://www.harzing.com/pop.htm), or Google Scholar
do provide some basic metrics, such as the h-index or g-
index; but they are not able to satisfy more complex evalua-
tion logics. The goal of ResEval Mash is therefore to enable
domain experts (typically non-programmers) to define and
run their own evaluation metrics in a simple and rapid way,
leveraging on suitably tailored mashup technology.

For explanation purpose, throughout this paper we will
use a specific scenario, which we introduce in the next sec-
tion. However, the tool is not restricted to one scenario
only and rather aims at allowing users to develop their own
mashups addressing a variety of different scenarios in the
research evaluation domain.



2. EXAMPLE SCENARIO
As an example of a concrete research evaluation task, let’s

look at the procedure used by the central administration of
the University of Trento (UniTN) to assess the productivity
of the researchers of its departments. The evaluation is used
to allocate resources and funding for the university depart-
ments. In essence, the algorithm compares the scientific pro-
duction of each researcher in a given department of UniTN
with the average production of the researchers belonging
to similar departments (i.e., departments in the same dis-
ciplinary sector) in all Italian universities. The comparison
uses a procedure based on a simple bibliometric indicator,
i.e., a weighted publication count metric:

1. A list of all researchers working in Italian universities
is retrieved, and a reference sample with similar statis-
tical features of the evaluated department is compiled.

2. Publications for each researcher of the selected depart-
ment and for all Italian researchers in the selected sam-
ple are extracted from an agreed-on data source (e.g.,
Microsoft Academic, Scopus, DBLP, or similar).

3. The obtained publications are weighted using a venue
classification provided by a UniTN committee, which
is split into three quality categories based on the ISI
Journal Impact Factor. For each researcher, a weighted
publication count is obtained with a simple weighted
sum of his/her publications.

4. A statistical distribution – more specifically, a nega-
tive binomial distribution – of the weighted publica-
tion count metrics is then computed for the national
researcher reference sample.

5. Each researcher of the selected department is then
ranked based on his/her individual weighted publica-
tion count, estimating his/her percentile in the derived
statistical distribution, i.e., the percentage of the re-
searchers in the same disciplinary sector that have the
same or lower values for the specific metric.

The percentile for each researcher in the selected depart-
ment is used as the parameter that estimates the publishing
profile of that researcher and is used for the comparison with
other researchers in the same department. As one can no-
tice, plenty of effort is required to compute the performance
of each researcher, which is currently mainly done manually.

Many factors can significantly impact on the results of
this evaluation process (e.g., the data sources or the sam-
pling criteria), and people (e.g., administrative employees
and researchers) want to check the results of different pos-
sible metrics. If manually done, this would cost too much
time and human resources. The task, however, has all the
characteristics of a mashup, especially if the mashup logic
comes from the users.

3. THE RESEVAL MASH TOOL
The above scenario, the domain, and our target user group,

i.e., domain experts, pose a set of peculiar requirements to
the development of the ResEval Mash tool. In the following
we summarize the design principles that underlie ResEval
Mash and where the domain specifics come into play. Then,
we provide some insight into its internals and implementa-
tion.

3.1 Principles and Requirements
ResEval Mash is based on the following principles and

requirements:

1. Intuitive graphical user interface. Enabling do-
main experts to develop their own research evaluation
metrics, i.e., mashups, requires an intuitive and easy-
to-use user interface (UI) based on the concepts and
terminology the target domain expert is acquainted
with. Research evaluation, for instance, speaks about
metrics, researchers, publications, etc.

2. Intuitive modeling constructs. Next to the look
and feel of the platform, it is important that the func-
tionalities provided through the platform (i.e., the build-
ing blocks in the composition design environment) re-
semble the common practice of the domain. For in-
stance, we need to be able to compute metrics, to
group people and publications, and so on.

3. No data mappings. Our experience with prior mash-
up platforms, i.e., mashArt [2] and MarcoFlow [3], has
shown that data mappings are one of the least intu-
itive tasks in composition environments and that non-
programmers are typically not able to correctly specify
them. We therefore aim to develop a mashup platform
that is able to work without data mappings.

4. Runtime transparency. In order to convey to the
user what is going on during the execution of a mashup
especially when it takes several seconds, we provide
transparency into the state of a running mashup. We
identify two key points where transparency is impor-
tant in the mashup model: components and processing
state. At each instant of time during the execution, the
runtime environment should allow the user to inspect
the data processed and produced by each component.
In addition, to convey the processing state of each com-
ponent and thus the mashup model the environment
should graphically show the state.

5. Data-intensive processes. Although apparently sim-
ple, the chosen domain is peculiar in that it may re-
quire the processing of large amounts of data (e.g., we
need to extract all the publications of the Italian re-
searchers’ sample for a given scientific sector). While
runtime transparency is important at the client side,
data processing should however be kept at the server
side. In fact, loading large amounts of data from re-
mote services and processing them in the browser at
the client side is unfeasible, due to bandwidth, re-
source, and time restrictions.

3.2 The Domain
Some of the above requirements require ResEval Mash to

specifically take into account the characteristics of the re-
search evaluation domain. Doing so produces a platform
that is fundamentally different from generic mashup plat-
forms, such as Yahoo! Pipes (http://pipes.yahoo.com/
pipes/). We achieve domain-specificity as follows:

To provide users with a mashup environment that has an
intuitive graphical UI we design first a domain syntax ,
which provides each object in the composition environment
with a visual metaphor that the domain expert is acquainted



Component 
Registration 

Interface

Figure 1: The ResEval Mash architecture

with and that visually convey the respective functionalities.
For instance, ResEval Mash uses a gauge for metrics and
the icons that resemble the chart types of graphical output
components.

The core of the platform are the functionalities exposed to
the domain expert in the form of modeling constructs. These
must address the specific domain needs and cover as many
as possible mashup scenarios inside the chosen domain. To
design these constructs, a thorough analysis of the domain
is needed, so as to produce a so-called domain process
model , which specifies the classes of domain activities and,
possibly, ready processes that are needed (e.g., data sources
and metrics). Next, a set of instances of domain ac-
tivities (e.g., an h-index algorithm) must be implemented,
which can be turned into concrete mashup components.

Finally, in order to relieve users from the definition of data
mappings, ResEval Mash is based on an explicit domain
concept model , which expresses all domain concepts and
their relationships. If all instances of domain activities un-
derstand this domain concept model and produce and con-
sume data according to it, we can omit data mappings from
the composition environment in that the respective compo-
nents simply know how to interpret inputs.

3.3 Architecture and Implementation
Figure 1 shows the architecture of ResEval Mash, which

is divided into two parts, i.e., client side and server side.
The mashup engine is the most important part of the

platform. It is developed for client-side processing, that is,
we control data processing on the server from the client.
The engine is primarily responsible for running a mashup
composition, triggering the component’s actions, and man-
aging the communication between client and server. The
engine provides for data flow processing. The composition
editor provides the mashup design canvas to the user. It
shows a components list, from which users can drag and
drop components onto the canvas in order to connect them.
The editor implements the domain syntax. From the editor,
it is also possible to launch the execution of a composition
through a run button and hand the mashup over to the
mashup engine for execution. The composition editor and
its various parts are shown in Figure 3. Component and
composition mappers parse component and composition
descriptors to represent them in the composition editor at
design time and to bind them in the engine at run time.

The platform also comes with a component registration

Component definition: component 
description following an own, internal 
component description language

Domain-specific 
symbols: a set of 
symbols that can 
be used to set up 
a domain-specific 
syntax

Figure 2: Component registration interface

interface for developers, which aids them in the setup and
addition of new components to the platform. As shown in
Figure 2, the interface allows the developer to define compo-
nents starting from ready templates. In order to develop a
component, the developer has to provide two artifacts: (i) a
component definition and (ii) a component implementation.
The implementation consists either of JavaScript code, for
client-side components, or a web service, for server-side com-
ponents, which is linked by the component definition.

The whole client-side part of ResEval Mash is developed
in JavaScript, using the Google Closure and WireIt libraries.

On the server side, we have a set of RESTful web ser-
vices, i.e., the repository services, authentication ser-
vices, and components services. Repository services en-
able CRUD operations for components and compositions.
Authentication services are used for user authentication and
authorization. Components services manage and allow the
invocation of those components whose business logic is im-
plemented as a web service. These web services, together
with the client-side components, implement the instances
of domain activities inside the domain process model. The
common data model (CDM) implements the domain con-
cept model and supports the checking of data types in the
system. The CDM is a shared memory that provides a space
for each mashup instance. All data processing services read
and write to this shared memory. In order to configure the
CDM, the CDM memory manger generates corresponding
Java classes (e.g., in our case POJO classes, annotated with
JAXB annotations) from an XSD that encodes the domain
concept model. The server-side engine is responsible for
managing all the modules that are at the server side, e.g.,
the CDM memory manager, the repository, and so on. The
server-side engine is the place where requests coming from
the client side are fulfilled.

In Figure 3, we illustrate the final mashup model of our re-
search evaluation scenario as developed with ResEval Mash.
The model starts with two parallel flows: one computing the
weighted publication number (the “impact” metric in the
specific scenario) for all Italian researchers in the Computer
Science disciplinary sector. The other computing the same
“impact” metric for the researchers belonging to UniTN
Computer Science department. The first branch defines the
distribution of the Italian researchers for the Computer Sci-
ence disciplinary sector, while the second branch is used to
compute the impact value of UniTN’s researchers and to
determine their individual percentiles, which are finally vi-



Figure 3: ResEval Mash in action: screen shots of the modeling canvas and the final mashup output

sualized in a bar chart (for obvious reasons, we anonymized
the respective data).

4. DEMONSTRATION STORYBOARD
The live demo will be presented starting from an intro-

duction of the reference domain (i.e., research evaluation)
and the motivation behind the implementation of ResEval
Mash. A guided walk-through the tool will be presented
to introduce the modeling paradigm of the tool. We will
compose a few example scenarios and describe the various
features provided by the tool. After this introduction, we
will ask people from the audience to try the tool and to de-
velop their own simple research evaluation mashups. A short
introduction of the component editor will be given to show
the component creation and deployment process. Finally,
the platform architecture will be presented to highlight the
various appealing aspects of the tool.

A screencast and a continuously updated prototype of Re-
sEval Mash is available at http://open.reseval.org/.

5. EVALUATION AND LESSONS LEARNED
ResEval Mash stems from the actual needs in our univer-

sity and from our own needs in term of research evaluation.
It also results from the observation that in general compo-
sition technologies failed to a large extent to strike the right
balance between ease of use and expressive power. They
define seemingly useful abstractions and tools, but in the
end domain experts are still not able to understand and use
them. What we have pursued in the development of ResEval
Mash, in essence, is to constrain the language to the domain
and to provide a domain-specific notation so that it becomes
easier to use and in particular does not require users to deal
with one of the most complex aspects of process modeling
(at least for end users), that of data mappings.

We have performed a user study of ResEval Mash with
10 users (5 with and 5 without IT skills and with differ-
ent domain expertise). Participants were asked to fill in a
questionnaire about their computing and research evalua-

tion skills before the test, to watch a video tutorial about
ResEval Mash, and to use the tool, while being filmed.

The comparison between the two groups of users high-
lighted good performance independently of participants’ com-
puting skills. The request for higher training emerging from
a few less expert users appeared to be rather linked to a
weaker domain knowledge than to their computing capa-
bilities. A major finding is related to the ease with which
our sample understood that components had to be linked
together so that information could flow between different
services. This is a well-acknowledged problem evinced in
several user studies of EUD tools (e.g., [6]), which did not
occur at all in the current study. To a large extent, this re-
sult can be achieved thanks to the fact that ResEval Mash
relieves users from the definition of data mappings.

Acknowledgment: This work was supported by EU
project OMELETTE (contract no. 257635).

6. REFERENCES
[1] M. F. Costabile, D. Fogli, G. Fresta, P. Mussio, and

A. Piccinno. Software environments for end-user
development and tailoring. PsychNology Journal,
2(1):99–122, 2004.

[2] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan.
Hosted Universal Composition: Models, Languages and
Infrastructure in mashArt. In ER’09, pages 428–443.

[3] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng,
and L. Yan. From People to Services to UI: Distributed
Orchestration of User Interfaces. In BPM’10, pages
310–326.

[4] R. France and B. Rumpe. Domain specific modeling.
Software and Systems Modeling, 4:1–3, 2005.

[5] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, 2005.

[6] A. Namoun, T. Nestler, and A. De Angeli. Service
Composition for Non Programmers: Prospects,
Problems, and Design Recommendations. In
Proceedings of ECOWS, pages 123–130. IEEE, 2010.


