
An Open ECA Server for Active Applications

Florian Daniel
Dipartimento di Ingegneria e Scienza dell’Informazione

University of Trento
Via Sommarive 14

I-38100 Povo (TN), Italy
daniel@disi.unitn.it

http://www.floriandaniel.it

Giuseppe Pozzi
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza L. Da Vinci, 32

I-20133 Milano (MI), Italy
giuseppe.pozzi@polimi.it

http://home.dei.polimi.it/pozzi/

April 14th, 2008

PAPER CATEGORY: RESEARCH PAPER

An Open ECA Server for Active Applications 2 of 22

An Open ECA Server for Active Applications

Abstract
Event monitoring and active behaviors are important aspects in many software systems and
application domains, not only in database management systems. In this paper, we propose an
Event-Condition-Action (ECA) approach that spans from application data to application
components and behaviors. Starting from an exception manager we previously developed in the
context of a workflow management system, we derived an autonomous active component
capable of handling a variety of events and of enacting actions in response to detected events.
The ECA server runs as an autonomous engine and can be seamlessly integrated with existing
systems, thus enhancing the systems’ functionalities and maintainability by separating active and
non-active design concerns.

Keywords
ECA rules, Active rules, Event monitoring, Open ECA server, OES, Autonomous ECA server,
Active applications

INTRODUCTION
Until the emergence of the first operating systems and high-level programming languages
allowed developers to disregard hardware peculiarities, computers had to be programmed
directly in machine code Then, only in the eighties, Database Management Systems (DBMSs)
provided efficient, external data management solutions, and in the nineties Workflow
Management Systems (WfMSs) extended this idea and extracted entire processes from still rather
monolithic software systems. We believe that in similar way also active (also known as reactive)
behaviors, which are present in many modern applications (see for instance Section 2), can be
more efficiently managed by proper active software supports, such as active rules and rule
engines (Section 3).

The basic observation underlying this idea is that, when abstracting from the particular
application and domain, most of the active behaviors in software systems adhere to the rather
regular and stable ECA (Event-Condition-Action) paradigm. ECA rules have first been
introduced in the context of active DBMSs, where operations on data may raise events,
conditions check the status of the database, and actions perform operations on data. Our previous
experience in the field of WfMSs (Casati, Ceri, Paraboschi, and Pozzi, 1999; Combi and Pozzi,
2004) allowed us to successfully apply high-level ECA rules to WfMSs for the specification and
handling of expected exceptions that may occur during process execution. By leveraging this
experience, in this paper, we propose an ECA paradigm accompanied by a suitable rule
language, where events represent data, temporal, application or external events, conditions check
the state of data or of the application, and actions may act on data, applications, or external
resources. Active rules may thus not only refer to the data layer, but as well to the whole
application, comprising data and application-specific characteristics. Elevating active rules from

An Open ECA Server for Active Applications 3 of 22

the data layer to the application layer allows designers to express a broader range of active
behaviors and, more importantly, to address them at a suitable level of abstraction (Section 4).
This could turn out beneficial for example in requirements engineering approaches, such as the
ones described by Loucopoulos and Kadir (2008) or by Amghar, Meziane, and Flory (2002), as
well as in re-engineering approaches like the one described in Huang, Hung, Yen, Li, and Wu
(2006).

For the execution and management of ECA rules, we further propose an open ECA server (OES),
which runs in a mode that is completely detached from the execution of the actual application, so
as to alleviate the application from the burden of event management. OES is highly
customizable, which allows developers to easily add application- or domain-specific features to
the rule engine (Section 5 describes the customization process, Section 6 illustrates a use case of
the system). Instead of implementing the OES system from the scratch, we shall show how we
unbundled and reconfigured the necessary components from a previously developed exception
manager for a WfMS (Casati et al., 1999) (Section 7) – unbundling is the activity of breaking up
monolithic software systems into smaller units (Gatziu and Koschel, 1998). We thus move from
the ECA server we developed within the EC project WIDE to manage exceptions in the context
of Sema’s FORO commercial WfMS, where the exception manager (FAR) was tightly bundled
into FORO.

RATIONALE AND BACKGROUND
Active mechanisms or behaviors have been extensively studied in the field of active DBMSs as a
flexible and efficient solution for complex data management problems. Many of the results
achieved for relational or object-oriented active databases have recently been extended to tightly
related research areas such as XML repositories and ontology storage systems. To the best of our
knowledge, only few works (Dittrich, Fritschi, Gatziu, Geppert, and Vaduva, 2003;
Chakravarthy and Liao, 2001; Cugola, Di Nitto, and Fuggetta, 2001) try to elevate the
applicability of active rules from the data level to the application level and to eliminate the
tedious mapping from active behavior requirements to data-centric active rules (Section 8
discusses related works in more detail). Besides DBMSs, there are several application areas,
which could significantly benefit from an active rule support that also takes into account their
application- or domain-specific peculiarities. Among these application areas, we mention here:

▪ WfMSs or in general business process management systems allow one to define the
system-assisted execution of office/business processes that may involve several actors,
documents, and work items. Active mechanisms could be exploited for an efficient
enactment of the single tasks or work items, and the management of time constraints
during process execution (Combi and Pozzi, 2003; Combi and Pozzi, 2004).

▪ Web services and (Web) applications, which use Web services as data sources or
incorporate their business logic (Li, Huang, Yen, and Chang, 2007), may rely on an
asynchronous communication paradigm where an autonomous management of incoming
and outgoing events (i.e., messages) is crucial. Suitable active rules could ease the
integration of Web services with already existing (Web) applications. Active rules could
further serve for the coordination of service compositions, similar to the coordination of
actors and work items in a WfMS (Charfi and Mezini, 2004; Daniel, Matera, and Pozzi,
2006).

An Open ECA Server for Active Applications 4 of 22

▪ Exception handling is gaining more and more attention as a cross-cutting aspect in both
WfMSs and service compositions. The adoption of active rules for the specification of
exception handlers to react to application events has already proved its viability in the
context of WfMSs (Casati et al., 1999; Combi, Daniel, and Pozzi, 2006). Their adoption for
handling exception also in service compositions would thus represent a natural evolution.

▪ Time-critical systems or production and control systems, as well as the emerging
approaches to self-healing software systems (Mok, Konana, Liu, Lee, and Woo, 2004;
Minsky, 2003), intrinsically contain features or functionalities that are asynchronous with
respect to the normal execution of the system (e.g., alerting the user of the occurrence of a
production error). Their execution may indeed be required at any arbitrary time during
system execution, and may thus not be predictable. Active rules are able to capture this
peculiarity at an appropriate level of abstraction.

▪ Adaptive applications or context-aware, ubiquitous, mobile, and multi-channel applications
incorporate active or reactive behaviors as functional system requirements (Wyse, 2006).
The event-condition-action paradigm of active rules thus perfectly integrates with the logic
of adaptivity, proper of such classes of software systems. The use of a dedicated rule
engine for the execution of rules representing adaptivity requirements fosters the separation
of concerns and the possibility of evolution of the overall system (Daniel et al., 2006;
Daniel, Matera, and Pozzi, 2008).

SUPPORTING ACTIVE BEHAVIORS IN APPLICATIONS
The above mentioned application areas show a wide range of potential applications of active
mechanisms and rule engines. Current approaches, however, mainly operate on the data level and
do not provide an adequate abstraction to also address application logic when specifying events,
conditions, and actions. As a consequence, developing applications with active behaviors
requires developers to address – each time anew – some typical problems:

▪ the definition of a set of events that trigger active behaviors and the development of
suitable event management logic (the event manager);

▪ the implementation of generic and application-specific action executors, which enable the
enactment of the actual active behaviors;

▪ possibly, the design of appropriate rule metadata, required to control rule execution and
prioritization;

▪ the specification of a suitable rule specification formalism; and
▪ the development of an according rule interpretation and execution logic (the rule engine).

Figure 1 arranges the previous design concerns into a possible architecture for active
applications. Of course, in most cases, the described modules and features might not be as easily
identifiable, because the respective functions are buried in the application code or because they
are just not thought of as independent application features. Nevertheless, conceptually we can
imagine the internal architecture be structured like in Figure 1.

An Open ECA Server for Active Applications 5 of 22

A
pp

lic
at

io
n

D
at

a
So

ur
ce

DB
Actions

Application

Rule
Engine

Event
Manager

ExecutorsExecutorsExecutors

Temporal
Events

Application
Events

Data
Events

Application Data Rule Metadata

External
Events

Figure 1 With no decoupled support for the management of active rules, each application internally needs to
cater for suitable rule management functions and rule metadata.

Typically, we classify events as application events, data events, temporal events, or external
events. Application events originate from the inside of the application; data events originate from
the application’s data source; temporal events originate from the system clock; and external
events originate from the outside of the application. All possible events in active applications can
be re-conducted to these four classes of events (Eder and Liebhart, 1995).

Given the previous considerations, developing active application may represent a cumbersome
undertaking. We however believe that developers can largely be assisted in the development of
such applications by introducing a dedicated, detached rule execution environment that extracts
the previously described active components from applications and acts as intermediate layer
between the application’s data and its application logic. This further fosters the separation of
concerns between application logic and (independent) active behaviors and the reuse and
maintainability of active rules.

The idea is graphically shown in Figure 2. Applications provide for the necessary application
events (now external events with respect to the rule engine) and the set of action executors that
enact the respective active behaviors; each application may have its own set of executors. The
customizable rule engine allows the applications to delegate the capturing of data events,
temporal events, and external events as well as the management of the set of rules that
characterize the single applications. The rule engine includes the necessary logic for maintaining
suitable rule metadata for multiple applications. The described architecture requires thus to
address the following research topics:

▪ the specification of a customizable rule specification language;
▪ the development of a proper runtime framework for rule evaluation;
▪ the provisioning of easy extension/customization mechanisms for the tailoring of the

generic rule engine to application-specific requirements.

An Open ECA Server for Active Applications 6 of 22

Adaptive Hypertext

A
pp

lic
at

io
n

R
ul

e
En

gi
ne

D
at

a
So

ur
ce

Data
Events

Temporal
Events

External
Events

DB Actions

Actions Actions

Customizable
Rule Engine

External
Events

Application Data Rule Metadata

Adaptive
Hypertext

Application B Adaptive
Hypertext
Executor aExecutor aExecutors BAdaptive

Hypertext
Application A Adaptive

Hypertext
Executor aExecutor aExecutors A

Figure 2 The introduction of a decoupled rule engine may largely assist the development of active
applications.

In the following, we propose the OES system, a rule execution environment that provides an
implementation of the idea expressed in Figure 2. OES is based on the so-called OpenChimera
language for rule specification and provides for advanced customization support.

THE OES SYSTEM
The OES system consists of two main logical components that complement each other: the
OpenChimera rule language for the definition of active behaviors and the OES rule engine for
the execution of OpenChimera rules. Both rule language and rule engine are extensible and easily
customizable, in order to be able to manage application-specific events, conditions, and actions.

The OpenChimera Language
The OpenChimera language is derived from the Chimera-Exception language (Casati et al.,
1999), a language for the specification of expected exceptions in WfMSs. Chimera-Exception is
based, in turn, on the Chimera language (Ceri and Fraternali, 1997) for active DBMSs.
OpenChimera builds on an object-oriented formalism, where classes are typed and represent
records of typed attributes that can be accessed by means of a simple dot-notation. Rules adhere
to the following structure:

define trigger <TriggerName>
 events <Event> [(,<Event>)+]
 condition [<Cond> [(,<Cond>)+]|none]
 actions <Action> [(,<Action>+)]
 [order <PriorityValue>]
end

A trigger <TriggerName> has one or more disjunctive triggering events (<Event>), a
condition with one or more conjunctive conditional statements (<Cond>), and one or more
actions (<Action>) to be performed in case the condition of the triggered rule holds. Rules may
have an associated priority (<PriorityValue>) in the range from 0 (lowest) to 1000 (highest).
Priorities enable the designer to define a rule execution order.

An Open ECA Server for Active Applications 7 of 22

Events

Events in OES can be specified according to the following taxonomy:

▪ Data events enable the monitoring of operations that change the content of data stored in
the underlying (active) DBMS. Similarly to rules in active databases, monitored events are
insert, delete, and update. Data events are detected at the database level by defining
suitable rules (or triggers) for the adopted active DBMS.

▪ External events must be first registered by applications in order to be handled properly.
External events are recognized by means of the raise primitive, which – when an external
event occurs – provides the name of the triggering event and suitable parameters (if
needed).

▪ Temporal events are related to the occurrence of a given timestamp and are based on the
internal clock of the system. In order to cope with a worldwide environment, all the
temporal references of these events are converted to the GMT time zone. Temporal events
are categorized as instant, periodic and interval events:

▪ Instant events are expressed as constants preceded by an @-sign (e.g. @timestamp
‘‘December 15th, 2005, 18:00:00’’);

▪ Periodic events are defined using the during keyword, separating the start of the event
from the respective time interval (e.g. 1/days during weeks denotes the periodic
time defined by the first day of each week). The full notation and additional details can
be found in (Casati et al., 1999);

▪ Interval events are expressed as elapsed duration since instant, where
instant is any type of event used as anchor event (e.g. elapsed (interval 1 day)
since modify (amount)).

Conditions
Conditions bind elements and perform tests on data. Since the adopted mechanism for rule
execution is detached, i.e. the triggering event and the rule execution take place in two separate
transactions, at rule execution time the context of the triggering event is reconstructed for
condition evaluation. For instance, if we consider a data event triggered by the modification of a
tuple, the occurred predicate of the OpenChimera language is used to select only the tuples that
have really been modified and on which the trigger can, possibly, execute the specified action.

Actions
Standard actions that can be performed include changes to the database and notifications via e-
mail messages. Other application-specific actions can be defined by means of external executors.
Several executors may be available, each one typically dedicated to one specific action. As we
shall show in Section 5, the customization of the actions that are available for rule definition
represent the real value of the OES system.

An Open ECA Server for Active Applications 8 of 22

A
pp

lic
at

io
n

R
ul

e
En

gi
ne

D
at

a
So

ur
ce

Adaptive
Hypertext

Adaptive
Hypertext

Adaptive
Hypertext

OES
Scheduler

Adaptive
Hypertext

Adaptive
Hypertext

Adaptive
ApplicationApplication

Adaptive
ApplicationApplicationExecutors

Temporal
Events

DB Access API

External
Events

Data
Events

Application DataRule Metadata

Rule Compiler

OpenChimera rules

OES
Interpreter

Applications

Event Manager

Adaptive
Hypertext

OES
Dispatcher

Figure 3 The architecture of the autonomous ECA server OES.

The OES Rule Engine
The internal architecture of the OES system, detailed in Figure 3, is composed of: Rule
Compiler, Event Manager, Scheduler, Interpreter, DB access API, and Dispatcher. The main
features of the constituent modules are described in the following.

▪ OES Rule Compiler: The Compiler accepts rules at rule creation time and translates them
into an intermediate execution language, proper configurations of the Event Manager, and
suitable rule metadata that are accessed at rule evaluation time. The Compiler is invoked
by specifying (i) the name of the file containing the source code of the rule and (ii) the
name of a file containing a data dictionary for the specific application domain, which is
basically a standard text file describing the data types used for type checking at compile
time.

Besides rule compilation, the Compiler is also in charge of rule management: commands
inside a source file provided in input to the compiler allow the developer to add new rules
(define trigger), to remove existing rules (remove trigger), or to modify existing
rules (modify trigger), thus enabling an incremental rule definition and a flexible rule
management.

▪ OES Event Manager: The Event Manager is sensitive to external and temporal events. For
the correct interpretation of interval events, the module registers those events that are used
as anchor events and raises the actual event only once the respective interval has elapsed.
Instant and periodical events are managed by means of a proper WakeUpRequest service.
Finally, the Event Manager may invoke the OES Scheduler directly if a real-time event is
raised.

An Open ECA Server for Active Applications 9 of 22

▪ OES Scheduler: The Scheduler periodically determines the rule instances which have been
triggered by monitoring the rule metadata and schedules triggered rules for execution
according to the rules’ priorities. The Scheduler is automatically invoked in a periodical
fashion, but it can also be invoked directly by the Event Manager: this forces an immediate
scheduling of the respective rule, still respecting possible priority constraints.

▪ OES Interpreter: The Interpreter is called by the OES Scheduler to execute a specific rule
in the intermediate language. The Interpreter evaluates the rule’s condition and computes
respective parameters. If a condition holds, actions are performed via the DB access API or
via the OES Dispatcher.

▪ OES Dispatcher: The Dispatcher provides a uniform interface for the execution of actions
by external executors and hides their implementation details to OES. External executors
play a key role in the customization of the system.

▪ OES DB Access API: The DB Access API provides a uniform access to different DBMSs.
At installation time, OES is configured with the driver for the specific DBMS adopted.
Specific drivers are needed, since OES also exploits some DBMS-specific functionalities
for the efficient execution of database triggers.

CUSTOMIZING THE OES SYSTEM
As described in the previous section, OES comes with a default set of generic events and actions;
domain-specific events and actions can be specified in form of external events and suitable
external executors. Hence, if the default set of events and actions suffices the needs of the
developer, he/she can immediately define rules without performing any additional customization.
If, instead, domain-or application-specific events and actions are required, he/she needs to
customize the OES system.

Customizing Events
New events are specified as external events, which are supported by the OES system through a
proper raising mechanism. External events must be registered in the OES system, in order to
enable their use in the definition of OpenChimera triggers. If notified of the occurrence of an
external event, OES inserts a respective tuple into the rule metadata. The metadata is periodically
checked by the OES Scheduler and enables condition evaluation and action execution.

When customizing events, the customizer has to implement the external program(s) that might
raise the event(s). Communications between external program(s) and OES are enabled through a
CORBA message passing mechanism. We observe that if the adopted DBMS has no active
behavior, no data event can be defined; temporal and external events, instead, can be normally
defined, detected, and managed as they do not require any specific active behavior from the
DBMS.

Customizing Conditions
The syntax of OpenChimera conditions can be extended with new data types, abstracting tables
in the underlying database. The definition of new types occurs by means of a so-called data
dictionary, which is a standard text file containing a name and a set of attributes for each new

An Open ECA Server for Active Applications 10 of 22

data type. At rule compilation time, the OES Compiler, besides rule definitions themselves,
requires the data dictionary to evaluate the proper use of data types for the variables included in
the trigger definition. The definition of the data dictionary is the only situation where the
Compiler has to read data that are specific to the application domain.

OES adopts a detached trigger execution model, where the triggering part of a rule is detected in
one transaction, and the condition and action parts of the trigger are executed in another
transaction. The definition of suitable data types in the data dictionary allows OES to reconstruct
at condition evaluation time the status of the transaction in which the rule was triggered.

Customizing Actions
Adding a new action to the syntax of the OpenChimera language requires adding suitable
descriptions and action executors to a so-called Action Dictionary. At rule compilation time, if
the OES Compiler encounters an action that is not included in the set of predefined actions, it
checks whether the specified action is included in a specific view in the database (the view
Action-Dictionary can be seen in Figure 6) by searching the specified action in the
ActionName attribute of the table Action. If the action is described in the view and its
signature (as specified by the Action_Tag table) complies with the parameters of the rule to be
compiled, the action is valid. If the OES Compiler fails in finding a matching tuple in the Action
Dictionary, a suitable error message is generated. At rule execution time, the OES Interpreter
processes the rule and the OES Dispatcher invokes the specified executor, as defined by the
Action Dictionary, launching it as a child process.

Executors in OES can be characterized according to three orthogonal aspects: the location of the
executor, dynamic vs. static parameters, and XML support:

▪ Location. Executors can be either local applications, running on the same system where
OES is running, or remote services accessible via the Internet. We observe that services,
even if running on the same system as OES, are always considered remote services.

▪ Parameters. Executors typically require input data. Parameters can be dynamically
computed by the OES Interpreter at run time, or they can be statically defined. If dynamic
parameters are required, the Interpreter performs a query over the application data,
computes the actual parameters, and writes them into an XML file. Static parameters can
be directly taken from the definition of the action and added to the XML file.

▪ XML support. Some executors are able to parse XML files, others do not. If an executor
parses XML, it is up to the executor to extract the parameters correctly. If an executor does
not parse XML, an intermediate parser is used to extract the parameters from the XML file
and to invoke the executor, suitably passing the required parameters.

According to the above criteria, executors are divided into the following categories:

a) Commands. Local applications with static parameters that are not capable of parsing XML.
The Dispatcher of OES constructs the command line and invokes the local system service
according to the parameters stored in the Executor table of Figure 6. Such an executor is
identified by the attribute CommandType=”CMD”, e.g. this may happen for a periodical
backup service performed via the tar command of a Unix system.

An Open ECA Server for Active Applications 11 of 22

b) Executors capable of reading XML files. Dynamic parameters are computed by the OES
Interpreter and stored in an XML file. The executor, in turn, can be a local application or a
client connecting to a remote service. Executors reading XML files are classified as follows:

b1) Local applications. The Dispatcher of OES invokes the local application and passes it the
name of the XML file with the parameters.

b2) Client connecting to an XML-enabled remote service. The Dispatcher of OES starts a
client application that connects to the remote service and sends the XML file via the
HTTP POST method. The executor, in turn, may reply with another XML file, e.g.
containing the results or the return code of the service.

c) Executors not capable of reading XML files. Dynamic parameters are computed by the OES
Interpreter and stored in an XML file. The invocation of the executors is performed via
specific, intermediate parsers, which extract the necessary parameters from the XML file and
invoke the executors by suitably passing the required dynamic parameters. Analogously to
XML-enabled executors, not XML-enabled executors are classified as follows:

c1) Local applications. The parser invokes the local application passing it the dynamic
parameters in the appropriate format.

c2) Client connecting to a remote service which is not XML-enabled. The parser sets up a
client-server connection with the remote service and passes it the dynamic parameters in
the appropriate format, possibly receiving results back.

It can be observed that executors not capable of reading XML files are internally treated like
executors capable of reading XML files by leveraging an intermediate layer of suitable parsers,
one parser for each specific executor. Figure 3 summarizes the taxonomy of executors.

Executor Reads XML

Does not read XML

Local application + XML file

Client + remote server + XML file

Parser + local application

Parser + client + remote server

Static parameters, only Local application

(b.1)

(b.2)

(c.2)

(c.1)

(a)

Figure 4 Taxonomy of executors.

CASE STUDY – THE NEW YORK STOCK EXCHANGE
In order to show how to customize OES in practice, we consider the stock exchange market. The
customers of a personal stock management software would like to be notified via SMS if the
price of one of their stocks (e.g. “MCP”) exceeds predefined limits; stock prices are to be
updated every 30 minutes during working days. Figure 5 shows an excerpt of the data structure
underlying the stock management software, to be used for the integration with OES.

An Open ECA Server for Active Applications 12 of 22

As we shall show in the following, supporting the required SMS feature requires the OES system
to be extended with two new actions: one (updateStock) for the periodic update of the stock
value, and one (sendSMS) to send the SMS notification message.

stockValue name value timeStamp
 MCP 4:35 10:13 GMT 31-Oct-2003
 IUO 18:52 11:33 GMT 30-Oct-2003

notification customerId stockName min max active
 2043 MCP 4.00 4.50 yes
 2045 MCP 4.10 4.40 yes
 2043 IUO 17.50 20.15 no

customer Id cellNumber
 2043 +347-0123456
 2045 +348-7654321

Figure 5 The stockValue, customer, and notification tables as defined by the management software.

Customizing OpenChimera and the Rule Engine
The event for the periodic update of the stock price in the underlying database is a periodic
temporal event, while the event triggering the sending of the SMS notification is a data event. As
both events are default OpenChimera events, no customization of OpenChimera events needs to
be performed.

The definition of suitable conditions over the database tables described in Figure 5, requires the
definition of according data types in the data dictionary. More precisely, the three data types
stockValue, notification, and customer, referring to the respective tables in the
database, must be included into the data dictionary, in order to be able to bind variables to them
and formulate proper data queries.

The two new actions (updateStock and sendSMS) can be made available to the OpenChimera
environment by means of two new tuples in the Action table of the OES system. In table
Action_Tag of Figure 6, the three tuples with attribute ActionName set to sendSMS or
updateStock, respectively, serve this purpose and conclude the customization of the
OpenChimera syntax. For the customization of the rule engine, we need to implement and to
register the two actions sendSMS and updateStock as external executors.

As for the sendSMS action, the transmission of short text messages to cell phones can be
performed free of charge from the Internet sites of major mobile telephone companies and of
major portals. Our executor for the new defined sendSMS action thus connects to a suitable Web
server and requests the transmission of messages. We assume that the executor myBrowser
serves this purpose. The definition of the new action requires thus the insertion of a new tuple
into the Action table and the definition of proper attributes (see Figure 6):

▪ ActionName defines the name of the action;

▪ Priority defines the default priority for the action (i.e. 10), which can be overwritten by
means of the order statement in the rule definition;

An Open ECA Server for Active Applications 13 of 22

▪ CommandType defines whether the action corresponds to an executor not capable of
reading XML files and with static parameters (“CMD”), or an XML-enabled executor
(“XML”);

▪ CommandRequest defines the actual invocation command to be launched by the
Dispatcher;

▪ ExecutorId is the unique identifier of the executor.

We consider now the action named sendSMS with executor id 22: CommandType is “XML”,
indicating that the executor is XML-enabled. CommandRequest is the name of the executor that
receives the XML file via the command line, connects to the remote server, and forwards the
XML file. The first tuple of the Action table thus binds the sendSMS action to a proper
executor.

To complete the definition of the action, we have to specify how static parameters can be passed
to the executor. Static parameters are defined by tuples in the Executor table (see Figure 6):

▪ ExecutorId is the unique identifier of the executor;

▪ Location defines the location where the executor can find the remote service, if needed.
In fact, if the executor requires a remote service, the executor runs as a client, connects to a
valid URL defined by Location, and sends out the XML file created by the Interpreter. If
Location is set to localhost, no remote service is needed;

▪ Par1, Par2, Par3 define the static parameters that may be used by local commands which
are not capable of reading XML files. We recall that this kind of executors is labeled
“CMD” in the attribute CommandType of the Action table.

Action ActionName Priority CommandType CommandRequest ExecutorId
 sendSMS 10 XML /usr/local/bin/myBrowser 22
 sendEMail 5 XML /usr/bin/myMailer 25
 Backup 1 CMD /usr/local/bin/tar 30
 updateStock 20 XML /usr/local/bin/myUpdateStock 6

Executor ExecutorId Location Par1 Par2 Par3
 22 http://freesms.jumpy.it
 25 localhost
 30 localhost -xvf /usr/home/agents /dev/rmt8
 6 http://quotazioni.borsitalia.it

Action_Tag ActionName Tag Pos
 sendSMS CellNumber 1
 sendSMS CellMessage 2
 sendEMail ESubject 1
 sendEMail EAddressee 2
 sendEMail EText 3
 updateStock StockName 1

Figure 6 Action-Dictionary view: Action, Executor, and Action_Tag tables. By joining them on the
ExecutorId and on the ActionName attributes, we obtain the Action-Dictionary view. The Action_Tag table is
used to check the signature of executors at rule compilation time. The names of system tables and of related
attributes are capitalized.

An Open ECA Server for Active Applications 14 of 22

As can be seen in Figure 6, the sendSMS action requires dynamic parameters that will be
computed at runtime and stored in an XML file. Specified parameters are translated into suitable
tags in the XML file and sorted according to the order in which they appear in the source code of
the rule. Dynamic parameters are specified in the Action_Tag table:

▪ ActionName defines the name of the action;

▪ Tag is the name of the tag inside the XML file (tag names must match the data dictionary);

▪ Pos defines the order of the parameters to be used in the OpenChimera language.

Thus, if the action is sendSMS, the two topmost tuples of Action_Tag define that the XML file
to be sent to the executor must be constructed as follows: the first dynamic parameter is the
number of the cell phone of the customer, and the second dynamic parameter is the message to
be sent to the customer.

The specification of the executor for the updateStock action is analogous to the one of the
sendSMS executor. The information we need to store represents the price of a stock at a given
time instant. To access this information, we again use an executor that uses the Web to
accomplish its task by searching the Web for the stock price and storing it into the application’s
data source.

To make the action updateStock available, we deploy a suitable executor, namely
myUpdateStock, available in the directory /usr/local/bin. Again, its inclusion into OES
requires inserting a suitable tuple in the ActionDictionary view of Figure 6. The name of the
action is updateStock, its priority is 20, its type is “XML”, the executor is myUpdateStock,
and the id is 6. Dynamic parameters for the executor are defined by the Action_Tag table: for
the current action, the only dynamic parameter needed is the name of the stock. The executor
myUpdateStock thus receives in input an XML file containing the name of the stock and
connects to the remote server. The invoked remote service replies with another XML file, from
which myUpdateStock reads the stock name, its value and its timestamp as defined by the
remote server, and stores these data in the database.

Specifying the Active Rules
Now we can specify the actual rules to define the required active behavior. For presentation
purposes, we assume that all customers are interested in the “MCP” stock, only.

The myUpdateStock executor accesses the DBMS and stores the stock name, the stock price
and its timestamp in the stockValue table. According to the customized syntax of the
OpenChimera language, we can now define the periodicalStockUpdate rule as follows.

define trigger periodicalStockUpdate
 events 30/minutes during days
 condition stockValue(S), S.name="MCP"
 actions updateStock(S.name)
end

The event part of the rule states that the rule must be invoked every 30 minutes. The condition
part considers all the instances S of the stockValue type (i.e., all the tuples inside the table
named stockValue) and selects only the tuples where S.name equals “MCP”. The action part

An Open ECA Server for Active Applications 15 of 22

invokes the executor myUpdateStock, corresponding to the updateStock action. The OES
Interpreter computes the required dynamic parameter by assigning the value “MCP” to the tag
StockName inside the XML file passed to the myUpdateStock executor. The
periodicalStockUpdate rule thus periodically stores the price of the chosen stock in the
database.

A second rule is needed to compare the stored price with the allowed range of variability. The
respective data are stored in the database and can be accessed by the following rule
stockOutOfRange, in order to trigger possible SMS notifications:

define trigger stockOutOfRange
 events modify(stockValue.value)
 condition stockValue(S), notification(N), customer(C),
 S.name=N.stockName, N.customerId=C.Id,
 occurred(modify(stockValue.value),S),
 not(N.min<S.value<N.max), N.active="yes"
 action sendSMS(C.cellNumber,"Stock "+S.name+
 " out of range. Its current price is "+S.value),
 N.active="no"
end

The event part of the rule states that the rule must be invoked each time the attribute value of a
tuple inside the stockValue table is changed (data event). The condition part has a twofold
goal. First, it aims at binding the instances of stockValue (S), of notification (N) and of
customer (C). The binding states that the stock must be related to a request of notification by an
interested customer: this is performed by a join operation. Second, the conditions part verifies
that tuples selected from the stockValue table are only those for which there has been a change
of the value attribute since the last execution of the rule
(occurred(modify(stockValue.value),S)), that the new price falls outside the allowed
variability range (not(N.min<S.value<N.Max)), and that the notification service is active
(N.active=“yes”). The action part is executed after all the conditions are true. The action
invokes the executor sendSMS whose parameters are the cell phone number of the customer
(C.cellNumber) and a string message including the name of the stock and its current price. In
order to prevent a continuous sending of the same message, a second action disables the
notification service (N.active=“no”) for the sent message. Users can easily enable the service
again through their stock management software.

IMPLEMENTATION
The OES system described in this paper is derived from the exception manager FAR (FORO
Active Rules), developed within the EC project WIDE and aimed at managing expected
exceptions in the workflow management system FORO (Casati et al., 1999). In the following,
we shortly outline the architecture of the FAR system and show how OES has been unbundled
from FAR. Then, we discuss termination, confluence, and security in OES.

The FAR System
Exception handling in WfMSs typically involves a wide scenario of events and actions. In the
case of the FAR system, the rule engine is able to manage the following four categories of events

An Open ECA Server for Active Applications 16 of 22

(Casati et al., 1999): data events, temporal events, workflow events (e.g. the start or the end of a
task or of a case), and external events. Concerning the actions that can be enacted through FAR,
the rule engine supports the following actions: data manipulation actions, workflow actions (e.g.
the start or completion of a task or a process instance, the assignment of a task or case to a
specific agent), and notification actions.

Figure 7 graphically summarizes the FORO/FAR architecture. Exceptions are specified by
means of the active rule language Chimera-Exception (Casati et al., 1999), from which we
derived the OpenChimera language adopted in OES. Besides data events (originating from an
active Oracle database shared with the FORO system), temporal events and external events, FAR
is directly notified of workflow events coming from the FORO workflow engine. On the action
side, database actions are directly supported by the FAR system, while notifications and
workflow actions are performed via the FORO workflow engine.

Adaptive
Hypertext

Adaptive
Hypertext

Oracle DB

FORO
Engine

FAR
System

WF events External events

Temporal
events

DB events

DB actions

WF actions

Figure 7 FAR architecture and dependencies with FORO. FAR is bundled into FORO.

Unbundling the Rule Engine
The implementation of the OES system leveraged as much as possible the already existing
implementation of the FAR system. Instead of developing a new rule engine from scratch, we
decided to unbundle (Gatziu, Koschel, von Bultzingsloewen , and Fritschi, 1998; Silberschatz
and Zdonik, 1997) the necessary functionalities and modules from the FORO/FAR system.
When unbundling the rule engine from FORO/FAR, we had to re-consider all the interactions of
the tightly-coupled, bundled modules. In particular, we had to consider how events are notified
to the rule engine and how the rule engine enacts actions.

An extension of FAR’s built-in support for both external events and external executors provided
efficient means to enable users of OES (i.e., developers of active applications) to define
application-specific events and actions. The unbundled OES system thus inherits the support for
data events, temporal events, and external events from the FAR system, while workflow events
are not supported any longer, due to the unbundling of the rule engine from the WfMS.
Analogously, we were able to reuse FAR solutions to support the execution of database actions
and the flexible definition of external executors for customizable actions; again, workflow-
specific actions were discarded. The introduction of intermediate parsers allows OES to select
appropriate executors according to the specifications received from the rule engine.

In order to be capable of detecting events and of performing actions, the unbundled OES system
must implement suitable communication channels among the modules composing the system.
For example, OES must be able to start transactions over a given DBMS and to invoke external
applications, possibly passing some parameters. For the communication between internal

An Open ECA Server for Active Applications 17 of 22

modules, OES leverages CORBA and shared tables in the underlying database. While a shared
database works fine for internal modules, the adoption of a specific DBMS (i.e., Oracle) may
cause interoperability difficulties with external modules, such as external executors for
customized actions. Therefore, the communication with external executors added to the OES
system is based on XML as common format for accessing and sharing information. Data is
passed in form of XML documents, containing possible static and/or dynamic parameter values
or responses from the external executors.

Remarks

Termination
An active system guarantees termination if its rules are not allowed to trigger each other
indefinitely. If we define a rule r1 that reacts to the event e1 by executing the action a1, which in
turn triggers the event e1, the active system enters an endless loop if the condition of r1 always
holds (self-triggering). We may also define a rule r1 that reacts to the event e1 by executing the
action a1, which in turn triggers the event e2 of a rule r2 whose action a2 triggers again e1.
Should the conditions of r1 and r2 always hold, the active system enters an endless loop (cross-
triggering). Similarly, an active system may encounter a situation of cascaded triggering, if the
endless cycle involves more than two rules.

Potential situations of non-termination can be avoided by static and dynamic checks. Compile
time (static) detection is performed at rule compilation time by the OES Compiler: for each
potential loop, it issues a proper warning message. The static check is performed by a suitable
termination analysis machine, properly adapted to OES from (Casati et al., 1999). The resolution
of possible loops is up to the developer.

Run time (dynamic) detection of loops is more complex in OES than in FAR, as involved actions
can be external to OES itself. A self-triggering situation may occur when an action a1 invokes
the server s1, which in turn invokes a server s2 that is external and unknown to OES, and s2
invokes another server s3, whose actions trigger the event e1 of r1. This self-triggering situation
is very hard to detect, as it comes from subsequent server invocations outside OES. A simple yet
effective avoidance mechanism is limiting the maximum cascading level for rules: rules are
simply not allowed to trigger other rules indefinitely. OES (like most active DBMSs) adopts this
solution and uses an upper limit for cascaded activations that can be easily configured. With
respect to generic DBMSs, OES however does not limit this technique to data events only.

Confluence
In a system featuring active behaviors, confluence means that the final effect of the processing of
multiple concurrently triggered rules is independent of the ordering by which rules are triggered
and executed. The problem of confluence arises in many situations, like SQL triggers and stored
procedures in most conventional database applications. Typically, those situations generate non-
confluent behaviors, because actions are performed over sets of tuples, which by definition come
with no ordering criteria.

The same consideration applies to OES: each rule is intrinsically non-confluent, because it
associates a set-oriented, declarative condition with a tuple-oriented imperative action, and there

An Open ECA Server for Active Applications 18 of 22

is no language construct to impose a rule-internal order on the bindings that are selected by the
condition evaluation part. If in OES we assume to trigger a rule t1, its condition part may for
instance return a set of n unordered data tuples to which the rule’s actions are to be applied; at
this point, we cannot say for sure in which order the actions are enacted, as this typically depends
on the underlying active DBMS.

If, instead, we assume to trigger two (or more) rules t1, t2, the usage of priorities (i.e., the order
token of OpenChimera) enables the designer to define an ordering among the rules t1, t2, where
the highest priority rule is processed first. This option enables the designer to state a partial order
among the triggered rules t1, t2, but not an order that is internal to each rule.

Security

Security in OES relates to three different aspects: rule definition, event generation, and action
execution. At rule definition time, the customizer logs into OES and uses the OES Compiler. As
triggers and rule metadata are stored inside the DBMS, the security level provided by OES is the
one provided by the DBMS.

At event generation time, security issues concern data events, temporal events, and external
events. Data events require to access the DBMS and to insert, delete, or update data: again, the
security level provided by OES is the one provided by the underlying DBMS. Temporal events
are triggered by the internal clock of OES: their security level is the one provided by the
operating system on which OES is running. External events are triggered by external
applications: the security level of the entire system is the one implemented by the external
application, which has however to be registered into OES by the customizer prior to being able
to trigger any event.

At action execution time, security issues concern database actions and external actions. Database
actions are preformed locally by OES itself, which connects to the local DBMS and performs all
the actions defined by the involved rule over locally stored data: the security level provided by
OES is the same as the one provided by the DBMS. External actions, instead, require OES to
reach executors external to OES itself. The same criteria as those for external applications apply.

RELATED WORK

Active Database Management Systems
The scenario of event management in active DBMSs is the most relevant one.

Samos (Dittrich et al., 2003) is a very complex active OODBMS, which provides several active
functionalities, including event management similar to the one of OES. Samos runs coupled to
the Object-Store passive OODBMS, only. OES, which is not an active DBMS but a pure event
manager, can be mapped onto any active DBMS accepting the SQL language, and it provides
suitable interfaces for most common DBMSs. Samos provides a very powerful event definition
language, including relationships in event capturing (before..., after...), event composition
(sequence..., conjunction...), and an execution model which accepts both attached and detached
exception management. On the contrary, OES provides a very simple model featuring a numeric
prioritization of rules and the only detached mode of execution.

An Open ECA Server for Active Applications 19 of 22

Sentinel (Chakravarthy, 1997) was started as an OODBMS with event based rules capable of
defining composite events by an extended set of operators. Later on, the authors (Chakravarthy
and Liao, 2001) extended the system to include asynchronous events for a distributed
cooperative environment, obtaining a server which is not connected to any particular DBMS, but
runs as a message broker. With respect to Sentinel, OES adopts a more simplified event
definition mechanism and language. OES can detect database modification events at the very
database level, without requiring services from external event detectors, as required by
Chakravarthy and Liao, 2001. According to OES, the event detection takes place only locally,
even if in a distributed database environment, and the consequent action – if needed – may
require communication with other sites of the distributed environment. Thus, in OES distributed
events cannot be defined directly but need to be mapped as sets of local events and of local
actions. Local actions may also include communications among the sites of the distributed
environment.

EvE (Geppert,Tombros, and Dittrich, 1998) is an event engine implementing event-driven
execution of distributed workflows. Similarly to OES, EvE adopts a registration, detection, and
management mechanism, and it runs on a distributed, multi-server architecture. The main
differences of OES, with respect to EvE, are that: a) OES does not use rules to schedule tasks
according to a process model for the managed business process defined inside the WfMS; b) OES
does not select executors (brokers in EvE’s terminology) at runtime, choosing from a pool of
resources since only one executor is defined for every action; c) OES does not require a WfMS
environment as a core unit. In fact, OES can be run as a completely autonomous ECA server and
the definition of events is not related to any WfMS. OES is extremely free, autonomous, can
reference heterogeneous executors and allows one to define almost any type of event.

Framboise (Fritschi, Gatziu, and Dittrich, 1998) is a framework for the construction of active
DBMSs inheriting the rule language of Samos. Framboise represents a database middleware,
extending (Dittrich et al., 2003) to provide individual and customizable active services for any
arbitrary passive DBMS. With respect to Framboise, OES aims at providing active services
exploiting ECA rules over an existing active DBMS, capable of accepting standard SQL
statements and the definition of triggers. While the language of OES is much simpler than
Framboise’s, OES does not necessarily require a DBMS, thus limiting itself to manage temporal
and external events. On the other hand, if the application domain requires a DBMS, data events
can be managed by OES provided that the DBMS supports active behaviors. OES can be more
conveniently mapped on most commercial active DBMS, without requiring to recompile the
kernel of the active DBMS itself neither requiring to modify existing applications.

Workflow Management Systems
Some WfMSs - e.g., Mentor (Wodtke, Weißenfels, Weikum, Kotz Dittrich, and Muth, 1997),
Meteor (Krishnakumar and Sheth, 1995) - allow one to define a task to be executed whenever a
specified exception is detected and the related event is raised. Pitfalls for this solution are that
there is a wide separation between the normal evolution flow and the exception management
flow, and that an exception can only start as a new activity. Additionally, the detection of the
event must be formally performed whenever a task is terminated and before the next one is
started: the detection cannot be performed while a task is running. In other systems - e.g.,
ObjectFlow (Hsu and Kleissner, 1996) - a human agent is formally dedicated to the detection of

An Open ECA Server for Active Applications 20 of 22

asynchronous exceptions: after the event occurs, task execution is aborted and suitably defined
execution paths are executed.

The use of OES coupled to a WfMS to manage asynchronous events overcomes some of these
limitations. In fact, the detection of an event can take place even during the execution of a task,
and not only after the completion of the task and before the successor is activated. Furthermore,
the management of the exception can be completely automated, and may not require any human
intervention to identify compensation paths.

Active Middleware Systems
Middleware technology aims at providing low- to medium-level services, which can be exploited
by higher-level applications. In this area, Siena (Carzaniga, Rosenblum, and Wolf, 2001) is a
wide area notification service, and it is mainly focused on scalability issues. With respect to
OES, Siena can capture a reduced number of events, e.g. temporal events are not considered.

Amit (Adi and Etzion, 2004) is a “situation manager” which extends the concept of composite
events. An event is a significant instantaneous atomic occurrence identified by the system; a
situation requires the system to react to an event. The middleware aims at reducing the gap
between events and situations. Amit comes with a situation definition language enabling one to
capture events (immediate, delayed, deferred) and to detect situations. Applications are then
notified when required situations occur.

CONCLUSIONS AND FUTURE WORK
In this paper, we described the autonomous, open ECA server OES and its active rule language,
OpenChimera. OpenChimera supports the definition and the management of generic active rules
following the Event-Condition-Action (ECA) paradigm, while the OES rule engine, derived
from the FAR exception handler (Casati et al., 1999) of the FORO WfMS, supports the execution
of OpenChimera rules.

OES comes with a standard set of events and actions. Events cover data manipulation events,
temporal events, and events raised by external applications; the standard set of actions includes
data manipulation actions. It is possible to customize the OES system to application- or domain-
specific needs by adding new events and actions. OES can be coupled and customized with
relatively little effort with any existing system that requires event and rule management
solutions. The extended system allows designers to easily define application-specific active rules
and to insulate active application requirements from the core application logic.

OES therefore fosters separation of concerns in the application development process (i.e., active
and non-active requirements) and provides a robust solution to a cross-cutting implementation
issue: active rule management. The nature of the OES rule engine minimizes the efforts required
to integrate OES into other applications and further supports a flexible management of rules even
after application deployment, i.e., during runtime. At design time, the built-in support for the
detection of infinite loops represents a valuable tool to developers who typically have to deal
with a multitude of rules and interdependencies.

Acknowledgments

An Open ECA Server for Active Applications 21 of 22

We are grateful to Catia Garatti and Marco Riva for the implementation of the OES system,
starting from FAR, and we thank prof. Stefano Ceri of Politecnico di Milano, Italy, prof. Stefano
Paraboschi of the University of Bergamo, Italy, and prof. Fabio Casati of the University of
Trento, Italy, for fruitful discussions and suggestions.

REFERENCES
Adi, A., & Etzion, O. (2004). Amit - the situation manager. VLDB Journal, 13(2), 177-203.

Amghar, Y., Meziane, M., & Flory, A. (2002). Using business rules within a design process of
active databases. In S. Becker (Ed.), Data Warehousing and Web Engineering (pp. 161-184),
Hershey, PA: IRM Press.

Carzaniga, A., Rosenblum, D. S., & Wolf, A. L. (2001). Design and evaluation of a wide-Area
event notification service. ACM Transactions on Computer Systems, 19(3), 332-383.

Casati, F., Ceri, S., Paraboschi, S., & Pozzi, G. (1999). Specification and implementation of
exceptions in workflow management systems. ACM Transactions on Database Systems, 24(3),
405-451.

Ceri, S., & Fraternali, P. (1997). Designing database applications with objects and rules: the
IDEA methodology. Reading, MA: Addison-Wesley.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., & Matera, M. (2002). Designing
Data-Intensive Web Applications. San Francisco, CA: Morgan Kauffmann.

Chakravarthy, S. (1997). Sentinel: An object-oriented DBMS with event-based rules. In J.
Peckham (Ed.), SIGMOD Conference (pp. 572-575). New York: ACM Press.

Chakravarthy, S., & Liao, H. (2001). Asynchronous monitoring of events for distributed
cooperative environments. In H. Lu, & S. Spaccapietra (Eds.), Proceedings of CODAS’01 (pp.
25-32). Beijing: IEEE Computer Society.

Charfi, A., & Mezini, M. (2004). Hybrid Web service composition: business processes meet
business rules. In M. Aiello, M. Aoyama, F. Curbera, & M. P. Papazoglou (Eds.), Proceedings of
ICSOC’04 (pp. 30-38). New York: ACM Press.

Combi, C., Daniel, F., & Pozzi, G. (2006). A portable approach to exception handling in
workflow management systems. In R. Meersman & Z. Tari (Eds.), OTM Conferences (1), LNCS
4275 (pp. 201-218). Montpellier, France: Springer Verlag.

Combi, C., & Pozzi, G. (2003). Temporal conceptual modelling of workflows. In I. Song, S. W.
Liddle, T. Wang Ling, & P. Scheuermann (Eds.), Proceedings of ER’03, LNCS 2813 (pp. 59-
76). Chicago: Springer Verlag.

Combi, C., & Pozzi, G. (2004). Architectures for a temporal workflow management system. In
H. Haddad, A. Omicini, R. L. Wainwright, & L. M. Liebrock (Eds.), Proceedings of SAC’04 (pp.
659-666). New York: ACM Press.

Cugola, G., Di Nitto, E., & Fuggetta, A. (2001). The JEDI event-based infrastructure and its
application to the development of the OPSS wfMS. IEEE Transactions on Software Engineering,
27(9), 827-850.

An Open ECA Server for Active Applications 22 of 22

Daniel, F., Matera, M., & Pozzi, G. (2006). Combining conceptual modeling and active rules for
the design of adaptive web applications. In N. Koch & L. Olsina (Eds.), ICWE’06 Workshop
proceedings (article no.10). New York: ACM Press.

Daniel, F., Matera, & Pozzi, G. (2008). Managing runtime adaptivity through active rules: the
Bellerofonte framework, Journal of Web Engineering, in press.

Dittrich, K. R., Fritschi, H., Gatziu, S., Geppert, A., & Vaduva, A. (2003). Samos in hindsight:
experiences in building an active object-oriented DBMS. Information Systems Journal, 28(5),
369-392.

Eder, J., & Liebhart, W. (1995). The workflow activity model WAMO. In S. Laufmann, S.
Spaccapietra, & T. Yokoi (Eds.), Proceedings of CoopIS’95 (pp. 87-98). Vienna, Austria.

Fritschi, H., Gatziu, S., & Dittrich, K. R. (1998). Framboise - an Approach to framework-based
active database management system construction. In G. Gardarin, J. C. French, N. Pissinou, K.
Makki, & L. Bouganim (Eds.), Proceedings of CIKM '98 (pp. 364-370). New York: ACM Press.

Gatziu, S., Koschel, A., von Bultzingsloewen, G., & Fritschi, H. (1998). Unbundling active
functionality. SIGMOD Record, 27(1), 35-40.

Geppert, A., Tombros, D., & Dittrich, K. R. (1998). Defining the semantics of reactive
components in event-driven workflow execution with event histories. Information Systems
Journal, 23(3-4), 235-252.

Hsu, M., & Kleissner, C. (1996). Objectflow: towards a process management infrastructure.
Distributed and Parallel Databases, 4(2), 169-194.

Huang, S., Hung, S., Yen, D., Li, S., & Wu, C. (2006). Enterprise application system
reengineering: a business component approach, Journal of Database Management, 17(3), 66-91.

Krishnakumar, N., & Sheth, A. P. (1995). Managing heterogeneous multi-system tasks to
support enterprise-wide operations. Distributed and Parallel Databases, 3(2), 155-186.

Li, S.H., Huang, S.M., Yen D.C., & Chang, C.C. (2007). Migrating legacy information systems
to web services architecture. Journal of Database Management, 18(4), 1-25.

Loucopoulos, P., & Kadir, W.M.N.W. (2008). BROOD: Business rules-driven object oriented
design. Journal of Database Management Systems, 19(1), 41-73.

Minsky, N. H. (2003). On conditions for self-healing in distributed software systems.
Proceedings of AMS’03 (pp. 86-92). Los Alamitos, CA: IEEE Computer Society.

Mok, A. K., Konana, P., Liu, G., Lee, C., & Woo, H. (2004). Specifying timing constraints and
composite events: an application in the design of electronic brokerages. IEEE Transactions on
Software Engineering, 30(12), 841-858.

Wyse, J. E. (2006). Location-aware query resolution for location-based mobile commerce:
performance evaluation and optimization. Journal of Database Management, 17(3), 41-65

Wodtke, D., Weißenfels, J., Weikum, G., Kotz Dittrich, A., & Muth, P. (1997). The Mentor
workbench for enterprise-wide workflow management. In J. Peckham (Ed.), Proceedings of
SIGMOD’97 (pp. 576-579). New York: ACM Press.

