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An Open ECA Server for Active Applications 
 

Abstract 
Event monitoring and active behaviors are important aspects in many software systems and 
application domains, not only in database management systems. In this paper, we propose an 
Event-Condition-Action (ECA) approach that spans from application data to application 
components and behaviors. Starting from an exception manager we previously developed in the 
context of a workflow management system, we derived an autonomous active component 
capable of handling a variety of events and of enacting actions in response to detected events. 
The ECA server runs as an autonomous engine and can be seamlessly integrated with existing 
systems, thus enhancing the systems’ functionalities and maintainability by separating active and 
non-active design concerns. 

 

Keywords 
ECA rules, Active rules, Event monitoring, Open ECA server, OES, Autonomous ECA server, 
Active applications 

 

INTRODUCTION 
Until the emergence of the first operating systems and high-level programming languages 
allowed developers to disregard hardware peculiarities, computers had to be programmed 
directly in machine code Then, only in the eighties, Database Management Systems (DBMSs) 
provided efficient, external data management solutions, and in the nineties Workflow 
Management Systems (WfMSs) extended this idea and extracted entire processes from still rather 
monolithic software systems. We believe that in similar way also active (also known as reactive) 
behaviors, which are present in many modern applications (see for instance Section 2), can be 
more efficiently managed by proper active software supports, such as active rules and rule 
engines (Section 3). 

The basic observation underlying this idea is that, when abstracting from the particular 
application and domain, most of the active behaviors in software systems adhere to the rather 
regular and stable ECA (Event-Condition-Action) paradigm. ECA rules have first been 
introduced in the context of active DBMSs, where operations on data may raise events, 
conditions check the status of the database, and actions perform operations on data. Our previous 
experience in the field of WfMSs (Casati, Ceri, Paraboschi, and Pozzi, 1999; Combi and Pozzi, 
2004) allowed us to successfully apply high-level ECA rules to WfMSs for the specification and 
handling of expected exceptions that may occur during process execution. By leveraging this 
experience, in this paper, we propose an ECA paradigm accompanied by a suitable rule 
language, where events represent data, temporal, application or external events, conditions check 
the state of data or of the application, and actions may act on data, applications, or external 
resources. Active rules may thus not only refer to the data layer, but as well to the whole 
application, comprising data and application-specific characteristics. Elevating active rules from 
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the data layer to the application layer allows designers to express a broader range of active 
behaviors and, more importantly, to address them at a suitable level of abstraction (Section 4). 
This could turn out beneficial for example in requirements engineering approaches, such as the 
ones described by Loucopoulos and Kadir (2008) or by Amghar, Meziane, and Flory (2002), as 
well as in re-engineering approaches like the one described in Huang, Hung, Yen, Li, and Wu 
(2006). 

For the execution and management of ECA rules, we further propose an open ECA server (OES), 
which runs in a mode that is completely detached from the execution of the actual application, so 
as to alleviate the application from the burden of event management. OES is highly 
customizable, which allows developers to easily add application- or domain-specific features to 
the rule engine (Section 5 describes the customization process, Section 6 illustrates a use case of 
the system). Instead of implementing the OES system from the scratch, we shall show how we 
unbundled and reconfigured the necessary components from a previously developed exception 
manager for a WfMS (Casati et al., 1999) (Section 7) – unbundling is the activity of breaking up 
monolithic software systems into smaller units (Gatziu and Koschel, 1998). We thus move from 
the ECA server we developed within the EC project WIDE to manage exceptions in the context 
of Sema’s FORO commercial WfMS, where the exception manager (FAR) was tightly bundled 
into FORO. 

RATIONALE AND BACKGROUND 
Active mechanisms or behaviors have been extensively studied in the field of active DBMSs as a 
flexible and efficient solution for complex data management problems. Many of the results 
achieved for relational or object-oriented active databases have recently been extended to tightly 
related research areas such as XML repositories and ontology storage systems. To the best of our 
knowledge, only few works (Dittrich, Fritschi, Gatziu, Geppert, and Vaduva, 2003; 
Chakravarthy and Liao, 2001; Cugola, Di Nitto, and Fuggetta, 2001) try to elevate the 
applicability of active rules from the data level to the application level and to eliminate the 
tedious mapping from active behavior requirements to data-centric active rules (Section 8 
discusses related works in more detail). Besides DBMSs, there are several application areas, 
which could significantly benefit from an active rule support that also takes into account their 
application- or domain-specific peculiarities. Among these application areas, we mention here: 

▪ WfMSs or in general business process management systems allow one to define the 
system-assisted execution of office/business processes that may involve several actors, 
documents, and work items. Active mechanisms could be exploited for an efficient 
enactment of the single tasks or work items, and the management of time constraints 
during process execution (Combi and Pozzi, 2003; Combi and Pozzi, 2004). 

▪ Web services and (Web) applications, which use Web services as data sources or 
incorporate their business logic (Li, Huang, Yen, and Chang, 2007), may rely on an 
asynchronous communication paradigm where an autonomous management of incoming 
and outgoing events (i.e., messages) is crucial. Suitable active rules could ease the 
integration of Web services with already existing (Web) applications. Active rules could 
further serve for the coordination of service compositions, similar to the coordination of 
actors and work items in a WfMS (Charfi and Mezini, 2004; Daniel, Matera, and Pozzi, 
2006). 
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▪ Exception handling is gaining more and more attention as a cross-cutting aspect in both 
WfMSs and service compositions. The adoption of active rules for the specification of 
exception handlers to react to application events has already proved its viability in the 
context of WfMSs (Casati et al., 1999; Combi, Daniel, and Pozzi, 2006). Their adoption for 
handling exception also in service compositions would thus represent a natural evolution. 

▪ Time-critical systems or production and control systems, as well as the emerging 
approaches to self-healing software systems (Mok, Konana, Liu, Lee, and Woo, 2004; 
Minsky, 2003), intrinsically contain features or functionalities that are asynchronous with 
respect to the normal execution of the system (e.g., alerting the user of the occurrence of a 
production error). Their execution may indeed be required at any arbitrary time during 
system execution, and may thus not be predictable. Active rules are able to capture this 
peculiarity at an appropriate level of abstraction. 

▪ Adaptive applications or context-aware, ubiquitous, mobile, and multi-channel applications 
incorporate active or reactive behaviors as functional system requirements (Wyse, 2006). 
The event-condition-action paradigm of active rules thus perfectly integrates with the logic 
of adaptivity, proper of such classes of software systems. The use of a dedicated rule 
engine for the execution of rules representing adaptivity requirements fosters the separation 
of concerns and the possibility of evolution of the overall system (Daniel et al., 2006; 
Daniel, Matera, and Pozzi, 2008). 

SUPPORTING ACTIVE BEHAVIORS IN APPLICATIONS 
The above mentioned application areas show a wide range of potential applications of active 
mechanisms and rule engines. Current approaches, however, mainly operate on the data level and 
do not provide an adequate abstraction to also address application logic when specifying events, 
conditions, and actions. As a consequence, developing applications with active behaviors 
requires developers to address – each time anew – some typical problems: 

▪ the definition of a set of events that trigger active behaviors and the development of 
suitable event management logic (the event manager); 

▪ the implementation of generic and application-specific action executors, which enable the 
enactment of the actual active behaviors; 

▪ possibly, the design of appropriate rule metadata, required to control rule execution and 
prioritization;  

▪ the specification of a suitable rule specification formalism; and 
▪ the development of an according rule interpretation and execution logic (the rule engine). 

Figure 1 arranges the previous design concerns into a possible architecture for active 
applications. Of course, in most cases, the described modules and features might not be as easily 
identifiable, because the respective functions are buried in the application code or because they 
are just not thought of as independent application features. Nevertheless, conceptually we can 
imagine the internal architecture be structured like in Figure 1. 
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Figure 1 With no decoupled support for the management of active rules, each application internally needs to 
cater for suitable rule management functions and rule metadata. 

Typically, we classify events as application events, data events, temporal events, or external 
events. Application events originate from the inside of the application; data events originate from 
the application’s data source; temporal events originate from the system clock; and external 
events originate from the outside of the application. All possible events in active applications can 
be re-conducted to these four classes of events (Eder and Liebhart, 1995). 

Given the previous considerations, developing active application may represent a cumbersome 
undertaking. We however believe that developers can largely be assisted in the development of 
such applications by introducing a dedicated, detached rule execution environment that extracts 
the previously described active components from applications and acts as intermediate layer 
between the application’s data and its application logic. This further fosters the separation of 
concerns between application logic and (independent) active behaviors and the reuse and 
maintainability of active rules. 

The idea is graphically shown in Figure 2. Applications provide for the necessary application 
events (now external events with respect to the rule engine) and the set of action executors that 
enact the respective active behaviors; each application may have its own set of executors. The 
customizable rule engine allows the applications to delegate the capturing of data events, 
temporal events, and external events as well as the management of the set of rules that 
characterize the single applications. The rule engine includes the necessary logic for maintaining 
suitable rule metadata for multiple applications. The described architecture requires thus to 
address the following research topics: 

▪ the specification of a customizable rule specification language; 
▪ the development of a proper runtime framework for rule evaluation; 
▪ the provisioning of easy extension/customization mechanisms for the tailoring of the 

generic rule engine to application-specific requirements. 
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Figure 2 The introduction of a decoupled rule engine may largely assist the development of active 
applications. 

In the following, we propose the OES system, a rule execution environment that provides an 
implementation of the idea expressed in Figure 2. OES is based on the so-called OpenChimera 
language for rule specification and provides for advanced customization support. 

THE OES SYSTEM 
The OES system consists of two main logical components that complement each other: the 
OpenChimera rule language for the definition of active behaviors and the OES rule engine for 
the execution of OpenChimera rules. Both rule language and rule engine are extensible and easily 
customizable, in order to be able to manage application-specific events, conditions, and actions. 

The OpenChimera Language 
The OpenChimera language is derived from the Chimera-Exception language (Casati et al., 
1999), a language for the specification of expected exceptions in WfMSs. Chimera-Exception is 
based, in turn, on the Chimera language (Ceri and Fraternali, 1997) for active DBMSs. 
OpenChimera builds on an object-oriented formalism, where classes are typed and represent 
records of typed attributes that can be accessed by means of a simple dot-notation. Rules adhere 
to the following structure: 

define trigger <TriggerName> 
  events    <Event> [(,<Event>)+] 
  condition [<Cond> [(,<Cond>)+]|none] 
  actions   <Action> [(,<Action>+)] 
  [order <PriorityValue>] 
end 

A trigger <TriggerName> has one or more disjunctive triggering events (<Event>), a 
condition with one or more conjunctive conditional statements (<Cond>), and one or more 
actions (<Action>) to be performed in case the condition of the triggered rule holds. Rules may 
have an associated priority (<PriorityValue>) in the range from 0 (lowest) to 1000 (highest). 
Priorities enable the designer to define a rule execution order. 



 

 

An Open ECA Server for Active Applications  7 of 22 

Events 

Events in OES can be specified according to the following taxonomy: 

▪ Data events enable the monitoring of operations that change the content of data stored in 
the underlying (active) DBMS. Similarly to rules in active databases, monitored events are 
insert, delete, and update. Data events are detected at the database level by defining 
suitable rules (or triggers) for the adopted active DBMS. 

▪ External events must be first registered by applications in order to be handled properly. 
External events are recognized by means of the raise primitive, which – when an external 
event occurs – provides the name of the triggering event and suitable parameters (if 
needed). 

▪ Temporal events are related to the occurrence of a given timestamp and are based on the 
internal clock of the system. In order to cope with a worldwide environment, all the 
temporal references of these events are converted to the GMT time zone. Temporal events 
are categorized as instant, periodic and interval events: 

▪ Instant events are expressed as constants preceded by an @-sign (e.g. @timestamp 
‘‘December 15th, 2005, 18:00:00’’); 

▪ Periodic events are defined using the during keyword, separating the start of the event 
from the respective time interval (e.g. 1/days during weeks denotes the periodic 
time defined by the first day of each week). The full notation and additional details can 
be found in (Casati et al., 1999); 

▪ Interval events are expressed as elapsed duration since instant, where 
instant is any type of event used as anchor event (e.g. elapsed (interval 1 day) 
since modify (amount)). 

Conditions 
Conditions bind elements and perform tests on data. Since the adopted mechanism for rule 
execution is detached, i.e. the triggering event and the rule execution take place in two separate 
transactions, at rule execution time the context of the triggering event is reconstructed for 
condition evaluation. For instance, if we consider a data event triggered by the modification of a 
tuple, the occurred predicate of the OpenChimera language is used to select only the tuples that 
have really been modified and on which the trigger can, possibly, execute the specified action. 

Actions 
Standard actions that can be performed include changes to the database and notifications via e-
mail messages. Other application-specific actions can be defined by means of external executors. 
Several executors may be available, each one typically dedicated to one specific action. As we 
shall show in Section 5, the customization of the actions that are available for rule definition 
represent the real value of the OES system. 
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Figure 3 The architecture of the autonomous ECA server OES. 

The OES Rule Engine 
The internal architecture of the OES system, detailed in Figure 3, is composed of: Rule 
Compiler, Event Manager, Scheduler, Interpreter, DB access API, and Dispatcher. The main 
features of the constituent modules are described in the following. 

▪ OES Rule Compiler: The Compiler accepts rules at rule creation time and translates them 
into an intermediate execution language, proper configurations of the Event Manager, and 
suitable rule metadata that are accessed at rule evaluation time. The Compiler is invoked 
by specifying (i) the name of the file containing the source code of the rule and (ii) the 
name of a file containing a data dictionary for the specific application domain, which is 
basically a standard text file describing the data types used for type checking at compile 
time. 

Besides rule compilation, the Compiler is also in charge of rule management: commands 
inside a source file provided in input to the compiler allow the developer to add new rules 
(define trigger), to remove existing rules (remove trigger), or to modify existing 
rules (modify trigger), thus enabling an incremental rule definition and a flexible rule 
management. 

▪ OES Event Manager: The Event Manager is sensitive to external and temporal events. For 
the correct interpretation of interval events, the module registers those events that are used 
as anchor events and raises the actual event only once the respective interval has elapsed. 
Instant and periodical events are managed by means of a proper WakeUpRequest service. 
Finally, the Event Manager may invoke the OES Scheduler directly if a real-time event is 
raised. 
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▪ OES Scheduler: The Scheduler periodically determines the rule instances which have been 
triggered by monitoring the rule metadata and schedules triggered rules for execution 
according to the rules’ priorities. The Scheduler is automatically invoked in a periodical 
fashion, but it can also be invoked directly by the Event Manager: this forces an immediate 
scheduling of the respective rule, still respecting possible priority constraints. 

▪ OES Interpreter: The Interpreter is called by the OES Scheduler to execute a specific rule 
in the intermediate language. The Interpreter evaluates the rule’s condition and computes 
respective parameters. If a condition holds, actions are performed via the DB access API or 
via the OES Dispatcher. 

▪ OES Dispatcher: The Dispatcher provides a uniform interface for the execution of actions 
by external executors and hides their implementation details to OES. External executors 
play a key role in the customization of the system. 

▪ OES DB Access API: The DB Access API provides a uniform access to different DBMSs. 
At installation time, OES is configured with the driver for the specific DBMS adopted. 
Specific drivers are needed, since OES also exploits some DBMS-specific functionalities 
for the efficient execution of database triggers. 

CUSTOMIZING THE OES SYSTEM 
As described in the previous section, OES comes with a default set of generic events and actions; 
domain-specific events and actions can be specified in form of external events and suitable 
external executors. Hence, if the default set of events and actions suffices the needs of the 
developer, he/she can immediately define rules without performing any additional customization. 
If, instead, domain-or application-specific events and actions are required, he/she needs to 
customize the OES system.  

Customizing Events 
New events are specified as external events, which are supported by the OES system through a 
proper raising mechanism. External events must be registered in the OES system, in order to 
enable their use in the definition of OpenChimera triggers. If notified of the occurrence of an 
external event, OES inserts a respective tuple into the rule metadata. The metadata is periodically 
checked by the OES Scheduler and enables condition evaluation and action execution. 

When customizing events, the customizer has to implement the external program(s) that might 
raise the event(s). Communications between external program(s) and OES are enabled through a 
CORBA message passing mechanism. We observe that if the adopted DBMS has no active 
behavior, no data event can be defined; temporal and external events, instead, can be normally 
defined, detected, and managed as they do not require any specific active behavior from the 
DBMS. 

Customizing Conditions 
The syntax of OpenChimera conditions can be extended with new data types, abstracting tables 
in the underlying database. The definition of new types occurs by means of a so-called data 
dictionary, which is a standard text file containing a name and a set of attributes for each new 
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data type. At rule compilation time, the OES Compiler, besides rule definitions themselves, 
requires the data dictionary to evaluate the proper use of data types for the variables included in 
the trigger definition. The definition of the data dictionary is the only situation where the 
Compiler has to read data that are specific to the application domain.  

OES adopts a detached trigger execution model, where the triggering part of a rule is detected in 
one transaction, and the condition and action parts of the trigger are executed in another 
transaction. The definition of suitable data types in the data dictionary allows OES to reconstruct 
at condition evaluation time the status of the transaction in which the rule was triggered.  

Customizing Actions 
Adding a new action to the syntax of the OpenChimera language requires adding suitable 
descriptions and action executors to a so-called Action Dictionary. At rule compilation time, if 
the OES Compiler encounters an action that is not included in the set of predefined actions, it 
checks whether the specified action is included in a specific view in the database (the view 
Action-Dictionary can be seen in Figure 6) by searching the specified action in the 
ActionName attribute of the table Action. If the action is described in the view and its 
signature (as specified by the Action_Tag table) complies with the parameters of the rule to be 
compiled, the action is valid. If the OES Compiler fails in finding a matching tuple in the Action 
Dictionary, a suitable error message is generated. At rule execution time, the OES Interpreter 
processes the rule and the OES Dispatcher invokes the specified executor, as defined by the 
Action Dictionary, launching it as a child process. 

Executors in OES can be characterized according to three orthogonal aspects: the location of the 
executor, dynamic vs. static parameters, and XML support: 

▪ Location. Executors can be either local applications, running on the same system where 
OES is running, or remote services accessible via the Internet. We observe that services, 
even if running on the same system as OES, are always considered remote services. 

▪ Parameters. Executors typically require input data. Parameters can be dynamically 
computed by the OES Interpreter at run time, or they can be statically defined. If dynamic 
parameters are required, the Interpreter performs a query over the application data, 
computes the actual parameters, and writes them into an XML file. Static parameters can 
be directly taken from the definition of the action and added to the XML file. 

▪ XML support. Some executors are able to parse XML files, others do not. If an executor 
parses XML, it is up to the executor to extract the parameters correctly. If an executor does 
not parse XML, an intermediate parser is used to extract the parameters from the XML file 
and to invoke the executor, suitably passing the required parameters. 

According to the above criteria, executors are divided into the following categories: 

a) Commands. Local applications with static parameters that are not capable of parsing XML. 
The Dispatcher of OES constructs the command line and invokes the local system service 
according to the parameters stored in the Executor table of Figure 6. Such an executor is 
identified by the attribute CommandType=”CMD”, e.g. this may happen for a periodical 
backup service performed via the tar command of a Unix system. 
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b) Executors capable of reading XML files. Dynamic parameters are computed by the OES 
Interpreter and stored in an XML file. The executor, in turn, can be a local application or a 
client connecting to a remote service. Executors reading XML files are classified as follows: 

b1) Local applications. The Dispatcher of OES invokes the local application and passes it the 
name of the XML file with the parameters. 

b2) Client connecting to an XML-enabled remote service. The Dispatcher of OES starts a 
client application that connects to the remote service and sends the XML file via the 
HTTP POST method. The executor, in turn, may reply with another XML file, e.g. 
containing the results or the return code of the service. 

c) Executors not capable of reading XML files. Dynamic parameters are computed by the OES 
Interpreter and stored in an XML file. The invocation of the executors is performed via 
specific, intermediate parsers, which extract the necessary parameters from the XML file and 
invoke the executors by suitably passing the required dynamic parameters. Analogously to 
XML-enabled executors, not XML-enabled executors are classified as follows: 

c1) Local applications. The parser invokes the local application passing it the dynamic 
parameters in the appropriate format. 

c2) Client connecting to a remote service which is not XML-enabled. The parser sets up a 
client-server connection with the remote service and passes it the dynamic parameters in 
the appropriate format, possibly receiving results back.  

It can be observed that executors not capable of reading XML files are internally treated like 
executors capable of reading XML files by leveraging an intermediate layer of suitable parsers, 
one parser for each specific executor. Figure 3 summarizes the taxonomy of executors. 

Executor Reads XML

Does not read XML

Local application + XML file

Client + remote server + XML file

Parser + local application

Parser + client + remote server

Static parameters, only Local application

(b.1)

(b.2)

(c.2)

(c.1)

(a)

 
Figure 4 Taxonomy of executors. 

CASE STUDY – THE NEW YORK STOCK EXCHANGE 
In order to show how to customize OES in practice, we consider the stock exchange market. The 
customers of a personal stock management software would like to be notified via SMS if the 
price of one of their stocks (e.g. “MCP”) exceeds predefined limits; stock prices are to be 
updated every 30 minutes during working days. Figure 5 shows an excerpt of the data structure 
underlying the stock management software, to be used for the integration with OES.  
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As we shall show in the following, supporting the required SMS feature requires the OES system 
to be extended with two new actions: one (updateStock) for the periodic update of the stock 
value, and one (sendSMS) to send the SMS notification message.  

 

stockValue  name value timeStamp 
  MCP 4:35 10:13 GMT 31-Oct-2003 
  IUO 18:52 11:33 GMT 30-Oct-2003 
 
notification  customerId stockName min max active 
  2043 MCP 4.00 4.50 yes 
  2045 MCP 4.10 4.40 yes 
  2043 IUO 17.50 20.15 no 
 
customer  Id cellNumber 
  2043 +347-0123456 
  2045 +348-7654321 

Figure 5 The stockValue, customer, and notification tables as defined by the management software.  

Customizing OpenChimera and the Rule Engine 
The event for the periodic update of the stock price in the underlying database is a periodic 
temporal event, while the event triggering the sending of the SMS notification is a data event. As 
both events are default OpenChimera events, no customization of OpenChimera events needs to 
be performed. 

The definition of suitable conditions over the database tables described in Figure 5, requires the 
definition of according data types in the data dictionary. More precisely, the three data types 
stockValue, notification, and customer, referring to the respective tables in the 
database, must be included into the data dictionary, in order to be able to bind variables to them 
and formulate proper data queries. 

The two new actions (updateStock and sendSMS) can be made available to the OpenChimera 
environment by means of two new tuples in the Action table of the OES system. In table 
Action_Tag of Figure 6, the three tuples with attribute ActionName set to sendSMS or 
updateStock, respectively, serve this purpose and conclude the customization of the 
OpenChimera syntax. For the customization of the rule engine, we need to implement and to 
register the two actions sendSMS and updateStock as external executors. 

As for the sendSMS action, the transmission of short text messages to cell phones can be 
performed free of charge from the Internet sites of major mobile telephone companies and of 
major portals. Our executor for the new defined sendSMS action thus connects to a suitable Web 
server and requests the transmission of messages. We assume that the executor myBrowser 
serves this purpose. The definition of the new action requires thus the insertion of a new tuple 
into the Action table and the definition of proper attributes (see Figure 6): 

▪ ActionName defines the name of the action; 

▪ Priority defines the default priority for the action (i.e. 10), which can be overwritten by 
means of the order statement in the rule definition; 
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▪ CommandType defines whether the action corresponds to an executor not capable of 
reading XML files and with static parameters (“CMD”), or an XML-enabled executor 
(“XML”); 

▪ CommandRequest defines the actual invocation command to be launched by the 
Dispatcher; 

▪ ExecutorId is the unique identifier of the executor. 

We consider now the action named sendSMS with executor id 22: CommandType is “XML”, 
indicating that the executor is XML-enabled. CommandRequest is the name of the executor that 
receives the XML file via the command line, connects to the remote server, and forwards the 
XML file. The first tuple of the Action table thus binds the sendSMS action to a proper 
executor. 

To complete the definition of the action, we have to specify how static parameters can be passed 
to the executor. Static parameters are defined by tuples in the Executor table (see Figure 6): 

▪ ExecutorId is the unique identifier of the executor; 

▪ Location defines the location where the executor can find the remote service, if needed. 
In fact, if the executor requires a remote service, the executor runs as a client, connects to a 
valid URL defined by Location, and sends out the XML file created by the Interpreter. If 
Location is set to localhost, no remote service is needed; 

▪ Par1, Par2, Par3 define the static parameters that may be used by local commands which 
are not capable of reading XML files. We recall that this kind of executors is labeled 
“CMD” in the attribute CommandType of the Action table. 

 
Action  ActionName Priority CommandType CommandRequest ExecutorId 
  sendSMS 10 XML /usr/local/bin/myBrowser 22 
  sendEMail 5 XML /usr/bin/myMailer 25 
  Backup 1 CMD /usr/local/bin/tar 30 
  updateStock 20 XML /usr/local/bin/myUpdateStock 6 
 
Executor  ExecutorId Location Par1 Par2 Par3 
  22 http://freesms.jumpy.it    
  25 localhost    
  30 localhost -xvf /usr/home/agents /dev/rmt8 
  6 http://quotazioni.borsitalia.it    
 
Action_Tag  ActionName Tag Pos 
  sendSMS CellNumber 1 
  sendSMS CellMessage 2 
  sendEMail ESubject 1 
  sendEMail EAddressee 2 
  sendEMail EText 3 
  updateStock StockName 1 

Figure 6 Action-Dictionary view: Action, Executor, and Action_Tag tables. By joining them on the 
ExecutorId and on the ActionName attributes, we obtain the Action-Dictionary view. The Action_Tag table is 
used to check the signature of executors at rule compilation time. The names of system tables and of related 
attributes are capitalized. 
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As can be seen in Figure 6, the sendSMS action requires dynamic parameters that will be 
computed at runtime and stored in an XML file. Specified parameters are translated into suitable 
tags in the XML file and sorted according to the order in which they appear in the source code of 
the rule. Dynamic parameters are specified in the Action_Tag table: 

▪ ActionName defines the name of the action; 

▪ Tag is the name of the tag inside the XML file (tag names must match the data dictionary); 

▪ Pos defines the order of the parameters to be used in the OpenChimera language. 

Thus, if the action is sendSMS, the two topmost tuples of Action_Tag define that the XML file 
to be sent to the executor must be constructed as follows: the first dynamic parameter is the 
number of the cell phone of the customer, and the second dynamic parameter is the message to 
be sent to the customer. 

The specification of the executor for the updateStock action is analogous to the one of the 
sendSMS executor. The information we need to store represents the price of a stock at a given 
time instant. To access this information, we again use an executor that uses the Web to 
accomplish its task by searching the Web for the stock price and storing it into the application’s 
data source. 

To make the action updateStock available, we deploy a suitable executor, namely 
myUpdateStock, available in the directory /usr/local/bin. Again, its inclusion into OES 
requires inserting a suitable tuple in the ActionDictionary view of Figure 6. The name of the 
action is updateStock, its priority is 20, its type is “XML”, the executor is myUpdateStock, 
and the id is 6. Dynamic parameters for the executor are defined by the Action_Tag table: for 
the current action, the only dynamic parameter needed is the name of the stock. The executor 
myUpdateStock thus receives in input an XML file containing the name of the stock and 
connects to the remote server. The invoked remote service replies with another XML file, from 
which myUpdateStock reads the stock name, its value and its timestamp as defined by the 
remote server, and stores these data in the database. 

Specifying the Active Rules 
Now we can specify the actual rules to define the required active behavior. For presentation 
purposes, we assume that all customers are interested in the “MCP” stock, only.  

The myUpdateStock executor accesses the DBMS and stores the stock name, the stock price 
and its timestamp in the stockValue table. According to the customized syntax of the 
OpenChimera language, we can now define the periodicalStockUpdate rule as follows. 

define trigger periodicalStockUpdate 
  events     30/minutes during days 
  condition  stockValue(S), S.name="MCP" 
  actions    updateStock(S.name) 
end  

The event part of the rule states that the rule must be invoked every 30 minutes. The condition 
part considers all the instances S of the stockValue type (i.e., all the tuples inside the table 
named stockValue) and selects only the tuples where S.name equals “MCP”. The action part 
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invokes the executor myUpdateStock, corresponding to the updateStock action. The OES 
Interpreter computes the required dynamic parameter by assigning the value “MCP” to the tag 
StockName inside the XML file passed to the myUpdateStock executor. The 
periodicalStockUpdate rule thus periodically stores the price of the chosen stock in the 
database. 

A second rule is needed to compare the stored price with the allowed range of variability. The 
respective data are stored in the database and can be accessed by the following rule 
stockOutOfRange, in order to trigger possible SMS notifications: 

define trigger stockOutOfRange 
  events     modify(stockValue.value) 
  condition  stockValue(S), notification(N), customer(C), 
             S.name=N.stockName, N.customerId=C.Id, 
             occurred(modify(stockValue.value),S), 
             not(N.min<S.value<N.max), N.active="yes" 
  action     sendSMS(C.cellNumber,"Stock "+S.name+ 
             " out of range. Its current price is "+S.value), 
             N.active="no" 
end 

The event part of the rule states that the rule must be invoked each time the attribute value of a 
tuple inside the stockValue table is changed (data event). The condition part has a twofold 
goal. First, it aims at binding the instances of stockValue (S), of notification (N) and of 
customer (C). The binding states that the stock must be related to a request of notification by an 
interested customer: this is performed by a join operation. Second, the conditions part verifies 
that tuples selected from the stockValue table are only those for which there has been a change 
of the value attribute since the last execution of the rule 
(occurred(modify(stockValue.value),S)), that the new price falls outside the allowed 
variability range (not(N.min<S.value<N.Max)), and that the notification service is active 
(N.active=“yes”). The action part is executed after all the conditions are true. The action 
invokes the executor sendSMS whose parameters are the cell phone number of the customer 
(C.cellNumber) and a string message including the name of the stock and its current price. In 
order to prevent a continuous sending of the same message, a second action disables the 
notification service (N.active=“no”) for the sent message. Users can easily enable the service 
again through their stock management software. 

IMPLEMENTATION 
The OES system described in this paper is derived from the exception manager FAR (FORO 
Active Rules), developed within the EC project WIDE and aimed at managing expected 
exceptions in the workflow management system FORO (Casati et al., 1999). In the following, 
we shortly outline the architecture of the FAR system and show how OES has been unbundled 
from FAR. Then, we discuss termination, confluence, and security in OES. 

The FAR System 
Exception handling in WfMSs typically involves a wide scenario of events and actions. In the 
case of the FAR system, the rule engine is able to manage the following four categories of events 
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(Casati et al., 1999): data events, temporal events, workflow events (e.g. the start or the end of a 
task or of a case), and external events. Concerning the actions that can be enacted through FAR, 
the rule engine supports the following actions: data manipulation actions, workflow actions (e.g. 
the start or completion of a task or a process instance, the assignment of a task or case to a 
specific agent), and notification actions. 

Figure 7 graphically summarizes the FORO/FAR architecture. Exceptions are specified by 
means of the active rule language Chimera-Exception (Casati et al., 1999), from which we 
derived the OpenChimera language adopted in OES. Besides data events (originating from an 
active Oracle database shared with the FORO system), temporal events and external events, FAR 
is directly notified of workflow events coming from the FORO workflow engine. On the action 
side, database actions are directly supported by the FAR system, while notifications and 
workflow actions are performed via the FORO workflow engine. 

Adaptive 
Hypertext

Adaptive 
Hypertext

Oracle DB

FORO
Engine

FAR
System

WF events External events

Temporal 
events

DB events

DB actions

WF actions

 
Figure 7 FAR architecture and dependencies with FORO. FAR is bundled into FORO. 

Unbundling the Rule Engine 
The implementation of the OES system leveraged as much as possible the already existing 
implementation of the FAR system. Instead of developing a new rule engine from scratch, we 
decided to unbundle (Gatziu, Koschel, von Bultzingsloewen , and Fritschi, 1998; Silberschatz 
and Zdonik, 1997) the necessary functionalities and modules from the FORO/FAR system. 
When unbundling the rule engine from FORO/FAR, we had to re-consider all the interactions of 
the tightly-coupled, bundled modules. In particular, we had to consider how events are notified 
to the rule engine and how the rule engine enacts actions. 

An extension of FAR’s built-in support for both external events and external executors provided 
efficient means to enable users of OES (i.e., developers of active applications) to define 
application-specific events and actions. The unbundled OES system thus inherits the support for 
data events, temporal events, and external events from the FAR system, while workflow events 
are not supported any longer, due to the unbundling of the rule engine from the WfMS. 
Analogously, we were able to reuse FAR solutions to support the execution of database actions 
and the flexible definition of external executors for customizable actions; again, workflow-
specific actions were discarded. The introduction of intermediate parsers allows OES to select 
appropriate executors according to the specifications received from the rule engine. 

In order to be capable of detecting events and of performing actions, the unbundled OES system 
must implement suitable communication channels among the modules composing the system. 
For example, OES must be able to start transactions over a given DBMS and to invoke external 
applications, possibly passing some parameters. For the communication between internal 
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modules, OES leverages CORBA and shared tables in the underlying database. While a shared 
database works fine for internal modules, the adoption of a specific DBMS (i.e., Oracle) may 
cause interoperability difficulties with external modules, such as external executors for 
customized actions. Therefore, the communication with external executors added to the OES 
system is based on XML as common format for accessing and sharing information. Data is 
passed in form of XML documents, containing possible static and/or dynamic parameter values 
or responses from the external executors. 

Remarks 

Termination 
An active system guarantees termination if its rules are not allowed to trigger each other 
indefinitely. If we define a rule r1 that reacts to the event e1 by executing the action a1, which in 
turn triggers the event e1, the active system enters an endless loop if the condition of r1 always 
holds (self-triggering). We may also define a rule r1 that reacts to the event e1 by executing the 
action a1, which in turn triggers the event e2 of a rule r2 whose action a2 triggers again e1. 
Should the conditions of r1 and r2 always hold, the active system enters an endless loop (cross-
triggering). Similarly, an active system may encounter a situation of cascaded triggering, if the 
endless cycle involves more than two rules. 

Potential situations of non-termination can be avoided by static and dynamic checks. Compile 
time (static) detection is performed at rule compilation time by the OES Compiler: for each 
potential loop, it issues a proper warning message. The static check is performed by a suitable 
termination analysis machine, properly adapted to OES from (Casati et al., 1999). The resolution 
of possible loops is up to the developer. 

Run time (dynamic) detection of loops is more complex in OES than in FAR, as involved actions 
can be external to OES itself. A self-triggering situation may occur when an action a1 invokes 
the server s1, which in turn invokes a server s2 that is external and unknown to OES, and s2 
invokes another server s3, whose actions trigger the event e1 of r1. This self-triggering situation 
is very hard to detect, as it comes from subsequent server invocations outside OES. A simple yet 
effective avoidance mechanism is limiting the maximum cascading level for rules: rules are 
simply not allowed to trigger other rules indefinitely. OES (like most active DBMSs) adopts this 
solution and uses an upper limit for cascaded activations that can be easily configured. With 
respect to generic DBMSs, OES however does not limit this technique to data events only. 

Confluence 
In a system featuring active behaviors, confluence means that the final effect of the processing of 
multiple concurrently triggered rules is independent of the ordering by which rules are triggered 
and executed. The problem of confluence arises in many situations, like SQL triggers and stored 
procedures in most conventional database applications. Typically, those situations generate non-
confluent behaviors, because actions are performed over sets of tuples, which by definition come 
with no ordering criteria. 

The same consideration applies to OES: each rule is intrinsically non-confluent, because it 
associates a set-oriented, declarative condition with a tuple-oriented imperative action, and there 
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is no language construct to impose a rule-internal order on the bindings that are selected by the 
condition evaluation part. If in OES we assume to trigger a rule t1, its condition part may for 
instance return a set of n unordered data tuples to which the rule’s actions are to be applied; at 
this point, we cannot say for sure in which order the actions are enacted, as this typically depends 
on the underlying active DBMS. 

If, instead, we assume to trigger two (or more) rules t1, t2, the usage of priorities (i.e., the order 
token of OpenChimera) enables the designer to define an ordering among the rules t1, t2, where 
the highest priority rule is processed first. This option enables the designer to state a partial order 
among the triggered rules t1, t2, but not an order that is internal to each rule. 

Security 

Security in OES relates to three different aspects: rule definition, event generation, and action 
execution. At rule definition time, the customizer logs into OES and uses the OES Compiler. As 
triggers and rule metadata are stored inside the DBMS, the security level provided by OES is the 
one provided by the DBMS.  

At event generation time, security issues concern data events, temporal events, and external 
events. Data events require to access the DBMS and to insert, delete, or update data: again, the 
security level provided by OES is the one provided by the underlying DBMS. Temporal events 
are triggered by the internal clock of OES: their security level is the one provided by the 
operating system on which OES is running. External events are triggered by external 
applications: the security level of the entire system is the one implemented by the external 
application, which has however to be registered into OES by the customizer prior to being able 
to trigger any event. 

At action execution time, security issues concern database actions and external actions. Database 
actions are preformed locally by OES itself, which connects to the local DBMS and performs all 
the actions defined by the involved rule over locally stored data: the security level provided by 
OES is the same as the one provided by the DBMS. External actions, instead, require OES to 
reach executors external to OES itself. The same criteria as those for external applications apply. 

RELATED WORK 

Active Database Management Systems 
The scenario of event management in active DBMSs is the most relevant one. 

Samos (Dittrich et al., 2003) is a very complex active OODBMS, which provides several active 
functionalities, including event management similar to the one of OES. Samos runs coupled to 
the Object-Store passive OODBMS, only. OES, which is not an active DBMS but a pure event 
manager, can be mapped onto any active DBMS accepting the SQL language, and it provides 
suitable interfaces for most common DBMSs. Samos provides a very powerful event definition 
language, including relationships in event capturing (before..., after...), event composition 
(sequence..., conjunction...), and an execution model which accepts both attached and detached 
exception management. On the contrary, OES provides a very simple model featuring a numeric 
prioritization of rules and the only detached mode of execution. 
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Sentinel (Chakravarthy, 1997) was started as an OODBMS with event based rules capable of 
defining composite events by an extended set of operators. Later on, the authors (Chakravarthy 
and Liao, 2001) extended the system to include asynchronous events for a distributed 
cooperative environment, obtaining a server which is not connected to any particular DBMS, but 
runs as a message broker. With respect to Sentinel, OES adopts a more simplified event 
definition mechanism and language. OES can detect database modification events at the very 
database level, without requiring services from external event detectors, as required by 
Chakravarthy and Liao, 2001. According to OES, the event detection takes place only locally, 
even if in a distributed database environment, and the consequent action – if needed – may 
require communication with other sites of the distributed environment. Thus, in OES distributed 
events cannot be defined directly but need to be mapped as sets of local events and of local 
actions. Local actions may also include communications among the sites of the distributed 
environment. 

EvE (Geppert,Tombros, and Dittrich, 1998) is an event engine implementing event-driven 
execution of distributed workflows. Similarly to OES, EvE adopts a registration, detection, and 
management mechanism, and it runs on a distributed, multi-server architecture. The main 
differences of OES, with respect to EvE, are that: a) OES does not use rules to schedule tasks 
according to a process model for the managed business process defined inside the WfMS; b) OES 
does not select executors (brokers in EvE’s terminology) at runtime, choosing from a pool of 
resources since only one executor is defined for every action; c) OES does not require a WfMS 
environment as a core unit. In fact, OES can be run as a completely autonomous ECA server and 
the definition of events is not related to any WfMS. OES is extremely free, autonomous, can 
reference heterogeneous executors and allows one to define almost any type of event. 

Framboise (Fritschi, Gatziu, and Dittrich, 1998) is a framework for the construction of active 
DBMSs inheriting the rule language of Samos. Framboise represents a database middleware, 
extending (Dittrich et al., 2003) to provide individual and customizable active services for any 
arbitrary passive DBMS. With respect to Framboise, OES aims at providing active services 
exploiting ECA rules over an existing active DBMS, capable of accepting standard SQL 
statements and the definition of triggers. While the language of OES is much simpler than 
Framboise’s, OES does not necessarily require a DBMS, thus limiting itself to manage temporal 
and external events. On the other hand, if the application domain requires a DBMS, data events 
can be managed by OES provided that the DBMS supports active behaviors. OES can be more 
conveniently mapped on most commercial active DBMS, without requiring to recompile the 
kernel of the active DBMS itself neither requiring to modify existing applications. 

Workflow Management Systems 
Some WfMSs - e.g., Mentor (Wodtke, Weißenfels, Weikum, Kotz Dittrich, and Muth, 1997), 
Meteor (Krishnakumar and Sheth, 1995) - allow one to define a task to be executed whenever a 
specified exception is detected and the related event is raised. Pitfalls for this solution are that 
there is a wide separation between the normal evolution flow and the exception management 
flow, and that an exception can only start as a new activity. Additionally, the detection of the 
event must be formally performed whenever a task is terminated and before the next one is 
started: the detection cannot be performed while a task is running. In other systems - e.g., 
ObjectFlow (Hsu and Kleissner, 1996) - a human agent is formally dedicated to the detection of 
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asynchronous exceptions: after the event occurs, task execution is aborted and suitably defined 
execution paths are executed. 

The use of OES coupled to a WfMS to manage asynchronous events overcomes some of these 
limitations. In fact, the detection of an event can take place even during the execution of a task, 
and not only after the completion of the task and before the successor is activated. Furthermore, 
the management of the exception can be completely automated, and may not require any human 
intervention to identify compensation paths. 

Active Middleware Systems 
Middleware technology aims at providing low- to medium-level services, which can be exploited 
by higher-level applications. In this area, Siena (Carzaniga, Rosenblum, and Wolf, 2001) is a 
wide area notification service, and it is mainly focused on scalability issues. With respect to 
OES, Siena can capture a reduced number of events, e.g. temporal events are not considered. 

Amit (Adi and Etzion, 2004) is a “situation manager” which extends the concept of composite 
events. An event is a significant instantaneous atomic occurrence identified by the system; a 
situation requires the system to react to an event. The middleware aims at reducing the gap 
between events and situations. Amit comes with a situation definition language enabling one to 
capture events (immediate, delayed, deferred) and to detect situations. Applications are then 
notified when required situations occur. 

CONCLUSIONS AND FUTURE WORK 
In this paper, we described the autonomous, open ECA server OES and its active rule language, 
OpenChimera. OpenChimera supports the definition and the management of generic active rules 
following the Event-Condition-Action (ECA) paradigm, while the OES rule engine, derived 
from the FAR exception handler (Casati et al., 1999) of the FORO WfMS, supports the execution 
of OpenChimera rules. 

OES comes with a standard set of events and actions. Events cover data manipulation events, 
temporal events, and events raised by external applications; the standard set of actions includes 
data manipulation actions. It is possible to customize the OES system to application- or domain-
specific needs by adding new events and actions. OES can be coupled and customized with 
relatively little effort with any existing system that requires event and rule management 
solutions. The extended system allows designers to easily define application-specific active rules 
and to insulate active application requirements from the core application logic. 

OES therefore fosters separation of concerns in the application development process (i.e., active 
and non-active requirements) and provides a robust solution to a cross-cutting implementation 
issue: active rule management. The nature of the OES rule engine minimizes the efforts required 
to integrate OES into other applications and further supports a flexible management of rules even 
after application deployment, i.e., during runtime. At design time, the built-in support for the 
detection of infinite loops represents a valuable tool to developers who typically have to deal 
with a multitude of rules and interdependencies. 

 

Acknowledgments 



 

 

An Open ECA Server for Active Applications  21 of 22 

We are grateful to Catia Garatti and Marco Riva for the implementation of the OES system, 
starting from FAR, and we thank prof. Stefano Ceri of Politecnico di Milano, Italy, prof. Stefano 
Paraboschi of the University of Bergamo, Italy, and prof. Fabio Casati of the University of 
Trento, Italy, for fruitful discussions and suggestions. 

 

REFERENCES 
Adi, A., & Etzion, O. (2004). Amit - the situation manager. VLDB Journal, 13(2), 177-203. 

Amghar, Y., Meziane, M., & Flory, A. (2002). Using business rules within a design process of 
active databases. In S. Becker (Ed.), Data Warehousing and Web Engineering (pp. 161-184), 
Hershey, PA: IRM Press. 

Carzaniga, A., Rosenblum, D. S., & Wolf, A. L. (2001). Design and evaluation of a wide-Area 
event notification service. ACM Transactions on Computer Systems, 19(3), 332-383. 

Casati, F., Ceri, S., Paraboschi, S., & Pozzi, G. (1999). Specification and implementation of 
exceptions in workflow management systems. ACM Transactions on Database Systems, 24(3), 
405-451. 

Ceri, S., & Fraternali, P. (1997). Designing database applications with objects and rules: the 
IDEA methodology. Reading, MA: Addison-Wesley. 

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., & Matera, M. (2002). Designing 
Data-Intensive Web Applications. San Francisco, CA: Morgan Kauffmann. 

Chakravarthy, S. (1997). Sentinel: An object-oriented DBMS with event-based rules. In J. 
Peckham (Ed.), SIGMOD Conference (pp. 572-575). New York: ACM Press. 

Chakravarthy, S., & Liao, H. (2001). Asynchronous monitoring of events for distributed 
cooperative environments. In H. Lu, & S. Spaccapietra (Eds.), Proceedings of CODAS’01 (pp. 
25-32). Beijing: IEEE Computer Society. 

Charfi, A., & Mezini, M. (2004). Hybrid Web service composition: business processes meet 
business rules. In M. Aiello, M. Aoyama, F. Curbera, & M. P. Papazoglou (Eds.), Proceedings of 
ICSOC’04 (pp. 30-38). New York: ACM Press. 

Combi, C., Daniel, F., & Pozzi, G. (2006). A portable approach to exception handling in 
workflow management systems. In R. Meersman & Z. Tari (Eds.), OTM Conferences (1), LNCS 
4275 (pp. 201-218). Montpellier, France: Springer Verlag. 

Combi, C., & Pozzi, G. (2003). Temporal conceptual modelling of workflows. In I. Song, S. W. 
Liddle, T. Wang Ling, & P. Scheuermann (Eds.), Proceedings of ER’03, LNCS 2813 (pp. 59-
76). Chicago: Springer Verlag. 

Combi, C., & Pozzi, G. (2004). Architectures for a temporal workflow management system. In 
H. Haddad, A. Omicini, R. L. Wainwright, & L. M. Liebrock (Eds.), Proceedings of SAC’04 (pp. 
659-666). New York: ACM Press. 

Cugola, G., Di Nitto, E., & Fuggetta, A. (2001). The JEDI event-based infrastructure and its 
application to the development of the OPSS wfMS. IEEE Transactions on Software Engineering, 
27(9), 827-850. 



 

 

An Open ECA Server for Active Applications  22 of 22 

Daniel, F., Matera, M., & Pozzi, G. (2006). Combining conceptual modeling and active rules for 
the design of adaptive web applications. In N. Koch & L. Olsina (Eds.), ICWE’06 Workshop 
proceedings (article no.10). New York: ACM Press.  

Daniel, F., Matera, & Pozzi, G. (2008). Managing runtime adaptivity through active rules: the 
Bellerofonte framework, Journal of Web Engineering, in press. 

Dittrich, K. R., Fritschi, H., Gatziu, S., Geppert, A., & Vaduva, A. (2003). Samos in hindsight: 
experiences in building an active object-oriented DBMS. Information Systems Journal, 28(5), 
369-392. 

Eder, J., & Liebhart, W. (1995). The workflow activity model WAMO. In S. Laufmann, S. 
Spaccapietra, & T. Yokoi (Eds.), Proceedings of CoopIS’95 (pp. 87-98). Vienna, Austria. 

Fritschi, H., Gatziu, S., & Dittrich, K. R. (1998). Framboise - an Approach to framework-based 
active database management system construction. In G. Gardarin, J. C. French, N. Pissinou, K. 
Makki, & L. Bouganim (Eds.), Proceedings of CIKM '98 (pp. 364-370). New York: ACM Press. 

Gatziu, S., Koschel, A., von Bultzingsloewen, G., & Fritschi, H. (1998). Unbundling active 
functionality. SIGMOD Record, 27(1), 35-40. 

Geppert, A., Tombros, D., & Dittrich, K. R. (1998). Defining the semantics of reactive 
components in event-driven workflow execution with event histories. Information Systems 
Journal, 23(3-4), 235-252. 

Hsu, M., & Kleissner, C. (1996). Objectflow: towards a process management infrastructure. 
Distributed and Parallel Databases, 4(2), 169-194. 

Huang, S., Hung, S., Yen, D., Li, S., & Wu, C. (2006). Enterprise application system 
reengineering: a business component approach, Journal of Database Management, 17(3), 66-91. 

Krishnakumar, N., & Sheth, A. P. (1995). Managing heterogeneous multi-system tasks to 
support enterprise-wide operations. Distributed and Parallel Databases, 3(2), 155-186. 

Li, S.H., Huang, S.M., Yen D.C., & Chang, C.C. (2007). Migrating legacy information systems 
to web services architecture. Journal of Database Management, 18(4), 1-25. 

Loucopoulos, P., & Kadir, W.M.N.W. (2008). BROOD: Business rules-driven object oriented 
design. Journal of Database Management Systems, 19(1), 41-73. 

Minsky, N. H. (2003). On conditions for self-healing in distributed software systems. 
Proceedings of AMS’03 (pp. 86-92). Los Alamitos, CA: IEEE Computer Society. 

Mok, A. K., Konana, P., Liu, G., Lee, C., & Woo, H. (2004). Specifying timing constraints and 
composite events: an application in the design of electronic brokerages. IEEE Transactions on 
Software Engineering, 30(12), 841-858. 

Wyse, J. E. (2006). Location-aware query resolution for location-based mobile commerce: 
performance evaluation and optimization. Journal of Database Management, 17(3), 41-65 

Wodtke, D., Weißenfels, J., Weikum, G., Kotz Dittrich, A., & Muth, P. (1997). The Mentor 
workbench for enterprise-wide workflow management. In J. Peckham (Ed.), Proceedings of 
SIGMOD’97 (pp. 576-579). New York: ACM Press. 


