
Business Processes for the Crowd Computer

Pavel Kucherbaev1, Stefano Tranquillini1, Florian Daniel1, Fabio Casati1,
Maurizio Marchese1, Marco Brambilla2, and Piero Fraternali2

1 University of Trento, Via Sommarive 5, 39123 Povo (TN), Italy
surname@disi.unitn.it

2 Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
name.surname@polimi.it

Abstract. Social networks and crowdsourcing platforms provide power-
ful means to execute tasks that require human intelligence instead of just
machine computation power. Especially crowdsourcing has demonstrated
its applicability in many fields, and a variety of platforms have been cre-
ated for delegating small tasks to human solvers on the Web. However,
creating applications that are structured, thus applications that combine
more than a single task, is a complex and typically manual endeavor
that requires many different interactions with crowdsourcing platforms.
In this paper, we introduce the idea of a crowd computer, discuss its
properties, and propose a programming paradigm for the development
of crowdsourcing applications. In particular, we argue in favor of busi-
ness processes as formalism to program the crowd computer and show
how they enable the reuse of intricate crowdsourcing practices.

1 Introduction

The ability to connect a large number of people and to lower the effort barrier to
collecting input from them in all sorts of contexts - while in the office, home, or
while waiting in line at the grocery store - facilitates the involvement of humans
in computations and information sourcing and processing tasks. The process
of involving humans in computations is typically referred to as crowdsourcing,
social computing, or variations thereof based on the aspect of human information
processing one wants to emphasize. As common in a relatively novel area of
research, there are a number of variations of the interpretation of these terms,
but, in general, they refer to the process of outsourcing task solving to a possibly
unknown and large number of people - the crowd [5], thereby harvesting the
collective intelligence to realize greater value from the interaction between users
and information [11].

Many social computing systems are already available on the market, some of
them born before the term “social computing” became widely known and used. If
we consider them based on the kind of computations they support, we can notice
that there are essentially two kinds of platforms: horizontal platforms, allowing
people to post different kinds of computing problems, and applications, tailored
at a specific kind of crowdsourcing task. An example of the former is Amazon
Mechanical Turk (MTurk), that gives the ability to post generic tasks to users



2 P. Kucherbaev et al.

and collects results. In a way, MTurk– together with its user base – resembles
the notion of a traditional computer, that is, something we can program to
execute a task. An example of crowdsourcing application is Wikipedia, where
the information is indeed crowdsourced but the task is restricted to that of
providing and managing information for an encyclopedia. In IT terms, this is
indeed more similar to a packaged application more than a computer.

Despite the early success of some of these platforms and applications, creating
a crowdsourcing application – or even a task on platforms such as MTurk – is still
an art, and in practice it is unfeasible to leverage a (social) computing platform
such as MTurk to create an application such as Wikipedia or others. Indeed,
MTurk is mostly used for very simple tasks, many of which oriented to research
studies on people’s behavior [10]. Indeed, social computing is still in its infancy
as a scientific discipline. The crowd can be a terrific source of information and
of “computing power”, able to execute some “computations” that a computer
(or a crowd of computers – the cloud) cannot do (or cannot do as effectively and
efficiently). However, there is no consensus or understanding of what a social
computer is, which its fundamental concepts, components and functionality are,
and how it can be “programmed”.

In this paper we discuss the characteristics of a particular instance of social
computer, a crowd computer, that is, a platform that can be programmed, with
a flexibility conceptually comparable to that of a traditional computer, to create
crowdsourcing applications. We propose and sketch-out a separation between
what are the basic functions of a crowd computer (conceptually analogous to
the instruction set of a microprocessor) and what should be instead specified
by programs that leverage these functions to generate applications. We then
identify programming language templates, expressed as process skeletons, that
can be reused by programmers to develop their applications. The goal is to
capture practices for the various aspects of business logic commonly needed in
crowdsourcing applications, simplifying the programming of the crowd computer
and laying a foundation the actual social computer.

This is a preliminary study based on our earlier analysis of what can be
achieved by social/crowd platforms and derived from some recent work (e.g.,
the work on CrowdSearch [2] and the work appearing at BPM2012 [12]).

Notice that this vision, while opening up a plethora of new application sce-
narios and implementation possibilities, also implies addressing a wide set of
related problems, spanning from ethical issues related to using human brains as
“components” of a computation platforms, to security, trust and performance of
this new platforms. In this paper we don’t address these issues directly, but we
design our solution also considering the need of addressing them in the future.

2 Scenario

For demonstration and explanation purposes, let’s imagine we want to organize
and manage a photo contest for a given thematic area, e.g., crowdsourcing. The



Business Processes for the Crowd Computer 3

Publish 
contest

Advertise 
contest

Send 
personalized 

invitations

Open 
contest

Close 
contest

Prepare 
notifications

Notify 
contributors

Get 
top-3 pictures

Task executed 
by the crowd 

Fig. 1. A simple photo contest crowdsourcing the selection of the top-3 contributions

idea is to publish a simple website for the submission of photos and to adver-
tise the contest via journals, magazines, and newspapers related to photography,
as well as via direct contacts (e.g., emails, Facebook contacts, Google+ circles,
etc.) to potentially interested photographers. The submission system is to be
kept open for one month, in parallel to all advertising activities. Upon the clo-
sure of the submission system, we simply want to crowdsource the selection of
the best three contributions, that is, we do not want to create an internal jury for
the selection of the best three photographs and instead delegate the task to the
crowd. Once the three best photos have been determined by the crowd, we pre-
pare and send out the notifications to photographers. The process is illustrated
in Figure 1.

While the overall process is a traditional BPM problem, the crowdsourcing of
the selection of the top-3 contributions is not. There are many possible crowd-
sourcing platforms we can use and many different ways we can use them to
obtain the ranking of photos. For instance, if we use Amazon Mechanical Turk
(MTurk) we must split the task into smaller chunks, in order to have tasks of
reasonable size (asking for a ranking of all submissions in one single task would
be too complex for a single worker). For example, a set of 10 photos could be
big enough to provide a reasonable choice to the worker and small enough to
allow fast decisions. We ask each worker for a ranking of the best three photos
out of their set, then we aggregate all results into one global ranking and select
the best three. Of course, we could also have another intermediate selection step
before the global ranking, split the photos differently, ask workers to order all
of their photos, etc. Specifying a good logic can be a complex, iterative task.

Whatever logic we adopt, the above idea of splitting the ranking into sub-
tasks is relatively naive, in that it does not consider possible quality issues re-
garding the feedback that can be obtained from crowsourcing platforms like
MTurk (and others). In order to grant a better quality of the final result, we
could for instance assign each chunk to two different workers and then average
their rankings, or we could have chunks that partially overlap, or we could ask
to workers to agree on a common ranking, and so on. Instead of focusing on the
quality of the feedbacks, we could also try to select only workers that we trust
are able to judge photos, e.g., because they are photographers themselves. Doing
so would require us to set up a suitable qualification test and to admit to the
“crowdsourced jury” only those that pass the test. We could get this information



4 P. Kucherbaev et al.

either by looking at their profiles or by simply asking them. But, again, there are
many possibilities. In summary, several options are at hand and it is not trivial
to understand which solution suits best which task.

3 The crowd computer: architecture and instruction set

In the following, we present and discuss a conceptual architecture of a crowd com-
puter, an information collection and processing system that can be programmed
to execute crowd computing applications.

3.1 Architecture

The crowd computer can be described based on an analogy and comparison
with a traditional computer or a cloud computing cluster. In both cases we
have computing systems: the main difference being that in the crowd computer
the “hardware” also includes the crowd, in addition to the traditional elements
of a computer (CPU, memory, etc.). This means that the information sources,
sinks, and processors can be humans, and therefore each processor operates at
will and in a rather non-deterministic fashion. Correspondingly, the instruction
set of a crowd computer also needs to be extended to interact with this new
type of processing entities, for example to distribute the work (possibly in a
redundant fashion), accept or reject it, remind workers, maintain profile and
rating information, and the like. These instructions are conceptually analogous
to an API for accessing the crowd (or, in other words, they represent a crowd
programming interface, or CPI).

Figure 2 shows the main components of the crowd computer , namely:

– two kinds of computing components: i) a traditional computer (in Von Neu-
mann’s terms, the arithmetic logic unit) and ii), the crowd;

– the crowdsourcing engine, that is, in terms of the Von Neumann machine,
the control unit that coordinates the execution of social computing pro-
grams. These programs are in turn composed of the instructions within the
instruction set, executed either by a CPU or by the crowd;

– a storage which, besides memory for data and instructions, includes data
on the crowd (members, their execution performance and history, ratings,
payment information, etc.);

– the crowd interaction component (a Graphical User Interface – GUI) that
connects the engine with the crowd. Because the crowd is made of humans,
interactions always occur through some (typically graphical) interface, which
can be a traditional desktop UI, a mobile UI, sensor-based, and the like. For
instance, in the case of Amazon Mechanical Turk, the GUI is the directly the
website mturk.com. In the general case, the GUI would adapt and provide
the needed human-computer interaction for the specific social application.

In this conceptual architecture we focus on the crowd aspect, assuming that
applications will obviously require traditional functionalities too. We also observe



Business Processes for the Crowd Computer 5

Crowdsourcing	
  engine	
  
(controller/scheduler)	
  

Crowd	
  Programming	
  Interface	
  
(executes	
  and/or	
  dispatches	
  
instruc;ons	
  to	
  the	
  crowd/

machine)	
  

Crowd	
  Interac;on	
  Interface	
  

Programs	
  

Program	
  execu;on	
  data	
  

Crowdsourcing	
  
process	
  templates	
  

Crowd	
  data	
  (user	
  profiles,	
  
payment	
  info,	
  etc)	
  	
  

Storage	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Crowd	
  
Computer	
  

Crowd	
  
(executes	
  human	
  tasks)	
  

Developer	
  

Fig. 2. Conceptual architecture of the crowd computer

that a crowd computer is naturally more open and dynamic than a traditional
one in that: the members and the profile of the crowd can change over time; the
specification of the tasks assigned to the crowd and the way they are executed
are more flexible; and and even the UI to communicate with the crowd may be
programmable as each application may want or need to have its own mechanisms
for communicating or collecting information from the crowd.

3.2 The Crowd Programming Interface (CPI)

When designing a crowd computer, a key decision lies in identifying the instruc-
tion set that it should have to support a reasonably large class of programs while
keeping the instruction set simple, manageable, and efficient. Our approach starts
from providing a minimal instruction set, which is then extended once we get an
understanding of the most commonly used patterns of invocation. A program
combines the instructions to implement specific behaviors or policies. We take a
similar stand here, briefly listing below which are the operations that should be
provided to the crowd programmer to implement crowd computing behaviors.
We then present process templates that can combine these instructions to define
behaviors and policies. In the following we will use the terms crowd instructions,
CPI (Crowd Programming Interface) or API interchangeably. The definition of
these functions stays at a high level of abstraction, trying to emphasize the



6 P. Kucherbaev et al.

needed functionality of API. As the reader will notice, a crowd computer with
the proposed instruction set will be more flexible (or less “hardcoded”) than
current crowdsourcing applications and even of current crowdsourcing platforms
that tend to hardcode some of the behaviors, which we instead see as being
specified at the programming (process) level. The crowd computer design relies
on the following definitions:

Human Task. This set of operations (and of corresponding data, stored as part
of the crowd computer storage) manages the human tasks lifecycle, essentially
submitting tasks to users and collecting replies. It provides several functions
like: create task - function that creates a new task with metadata about it; read
task - returns data and metadata about the task; update task - updates task
parameters (like deadline, maximum executors per task); delete task - deletes
information about the task; activate task - makes the task visible for crowd
workers; cancel task - makes task invisible for crowd workers; assign task -
assigns task with a list of crowd workers to be performed; connect task - connects
task with another task, making possible creation of processes; get list of tasks
- returns a list of tasks filtered by parameters; perform task - executor saves
results of solving task; submit task - executor submits results of solving task;
confirm task - requester confirms submitted results.

Profile. This CPI block stores and manages personal and skills information of
crowd workers. It contains a list of functions like: register profile - creates a
new profile of a crowdworker or a requester; authorize profile - authorization of
user profile by login and password; update profile - changes personal information
in profile or user skills information; delete profile; read profile information;
get list of profiles - returns a list of user profiles filtered by some parameters
(age, skills, education, experience); connect profiles - connects one profile with
others for creating groups, teams or substitutable crowd workers; update workers’
experience.

Qualification. This CPI block takes care of qualification tests in the crowd-
sourcing process to make sure crowd workers have enough expertise to solve a
given task. Here the list of core functions: create test - create a new qualification
test to check crowd worker experience; update test ; delete test ; connect test with
task ; validate test ; create experience parameter.

Payment. This block holds the payment basic functions, like: create reward -
creates an information in the payment system about an account of the requester
and the reward amount; propose reward - connects the proposed reward with the
task; pay reward - after results are confirmed the requester pays the executor.

In addition, a crowd computer would offer management operations that
provide runtime and statistical information on task completion status, perfor-
mances, and the like. Notice that the strategy on how to design and monitor
the crowd computing behaviour (starting from the definition of which tasks are
performed by humans and which ones by actual machines) lays in the hand of a
human designer. In this first version of the work we don’t address the problem
of dynamic or collaborative design of the crowd computer.



Business Processes for the Crowd Computer 7

Crowd TaskTask

Process/Program

Crowdsourcing Tactic

API Call

API Call

API Call

API Call API Call Crowd Task

Crowd 
Operation

Crowdsourcing Operation

Crowd Task

Notation for calls to 
APIs of the crowd 

computer

Task

Fig. 3. A three-layered approach to assisted programming of the crowd computer

4 Programming the crowd computer

What does it now mean to program a crowd computer? In essence, we need to
program the APIs exposed by the underlying crowdsourcing platform in such a
way that the resulting “program” (the set of API invocations) solves the task
we would like to crowdsource. In our reference scenario, this task is the ranking
of the top-3 photographs. We have seen that crowdsourcing that task requires
spitting the problem into sub-tasks, deciding on the order in which to execute
sub-tasks, aggregate feedbacks, control quality, possibly pre-select workers, etc.
As a matter of fact, this is like programming. In fact, we envision a process-driven
paradigm to “programming” the crowd computer, as such seems a natural fit for
structuring and managing both work and people. In line with this design choice,
as crowdsourcing engine (see Figure 2) we envision a business process engine
with suitable crowdsourcing extensions.

We have also seen that integrating crowd tasks into a common business pro-
cess logic is not trivial at all. For this integration, we identify three conceptual
layers of abstraction that help understand, modularize, and program crowdsourc-
ing applications (see Figure 3):

– At the top-most level, we have the process/program layer. This is the place
where we model the actual process logic, such as the one illustrated in Figure
1. We use the BPMN to express processes plus add a new construct to it,
i.e., the crowd task (labeled with a crowd icon), to tell which tasks are to be
delegated to the crowd. This layer talks about tasks and crowd tasks.

– Next, we have the crowdsourcing tactic layer. This is where we decide
how to approach the crowd and how to manage the overall crowdsourcing
process of each individual crowd task. For instance, MTurk implements a



8 P. Kucherbaev et al.

so-called marketplace tactic. If we used other platforms, we could have, for
instance, organized a contest tactic (like in Prizes.org), or similar. The tactic
decides how work is assigned, how workers are motivated, and how they
are remunerated. This layer shows API invocations and uses sub-processes
exposed by the lower layer.

– At the lower-most level, we have the crowdsourcing operations. This is
where we concretely decide about how to pre-select workers, how to control
quality, how to aggregate feedback, how to split input data, and similar. For
each aspect (e.g., pre-selection) there are typically several options for how to
implement it. This is the lowest level of detail and shows how to operatively
enact the different choices in terms of API calls or crowd tasks.

The three layers are tightly integrated with each other, yet they provide for
the necessary abstractions and flexibility to configure each crowd task according
to its very own characteristics and goals. The use of tactics on top of a crowd
computer allows us to abstract away from individual platform specifics (today,
each platform typically implements one tactic) and instead to focus on what is
best for each individual crowd task. Modular crowdsourcing operations enable
the flexible configuration of the different tactics and foster reuse.

In the following, we specifically look into the details of these latter two layers,
leaving the details of the process/program layer to future work. Specifically, we
express the two layers in terms of reusable BPMN patterns (sub-processes),
which assist the developer in programming the crowd computer. We choose
BPMN as a design notation because of its widespread adoption and rather solid
semantics (also considering that our patterns are quite simple and do not make
use of the most controversial aspects of the BPMN notation).

5 Crowdsourcing patterns

We start by explaining the logic of the tactics, focusing on two of the most used
approaches, i.e., marketplace and contest, then we show the operations that are
needed to turn the tactics into concrete API calls and crowd tasks.

5.1 Crowdsourcing tactics

In the general case, a crowd task is not an atomic action that can be executed
by one single worker, but rather a combination of steps and multiple workers.
The tactic tells which steps to use and which and how many workers to involve.
Yet, in current crowdsourcing platforms these tactics are typically applied at
the level of the individual task executed by a crowd worker. Therefore, before
applying a tactic to a given simple task, we split the complex crowd task into
smaller tasks. Only then we apply a tactic to each of the small tasks, and finally
merge all results into a final result for the crowd task. This logic is illustrated in
Figure 4(a). Different tactics to crowdsourced work exist; for space reasons, we
only illustrate the two most common ones, the market and the contest.



Business Processes for the Crowd Computer 9

Task.create()

Preselect Crowd Task.search()

Solve TaskEvaluate Result

Requester Crowd-Worker

Reward.give()

Executor

Crowd-Worker

Executor

Crete solution

Improve Solution

Task.create()

Preselect Crowd

Task.search()

Evaluate Results

Requester

Evaluate 
Solution

Executor

Reward.give()

(b) Marketplace tactic (c) Contest tactic

Requester

Split Task

Combine Results

Tactic

(a) Split of crowd task 
and merge of results

Manual task by 
executor

Concurrent work by 
multiple executors, 

represented as 
multi-instance lanes

Fig. 4. Splitting a crowd task, choosing a tactic, and merging the results

In Figure 4(b) we model the marketplace tactic. The marketplace is based
on the idea of a shared place where multiple requesters offer work for a given
reward, and workers can choose among the offers the one they like most. The
crowd worker who executes a task is called executor. Once the task is taken
by an executor it is removed from the platform. The executor is paid when he
submits his answer and when the answer is accepted by the requester.

Figure 4(c) models the contest tactic. The marketplace and the contest share
common parts, the beginning, where there is the creation and pre-selection, and
the end, where there is the validation and reward. Yet, in the contest, a task is
made available for a given amount of time, and many different executors may
perform it and submit answers. They are aware that they are in competition
with each other and that in the end only one (or some) will get the reward.
Executors can improve their solution as long as the task is active by taking into
account comments from the requester or by looking at the solutions by others.

Typically, the difference of these two tactics manifests itself also in the re-
ward. In the marketplace, solving a task is generally rewarded only with some
cents, and an executor is almost sure to receive this small amount. In the contest,
the reward is higher (up to hundreds or thousands of dollars), but only one or
few executors receive the reward.

5.2 Crowdsourcing operations

The tactics described in Figure 4 require the expansion of four sub-processes
for the splitting of the crowd task, the pre-selection of crowd workers, quality
control, and the final merge of feedbacks. Again, for each of these we may have
different typical solutions. We exemplify the most interesting ones here.

Preselection. Worker selection is one of the crucial steps in creating a crowd
task. Pre-selecting workers means defining minimum requirements to be eligible



10 P. Kucherbaev et al.

R
eq

ue
st

or Check
Test

Pl
at

fo
rm

Executor

AssignTask

(a) Patterns for the creation of the qualification test (b) platform logic ran when a executor requests a task

Test.create() Task.link(test)

Fig. 5. Qualification test pre-selection pattern with requester and platform concerns

Vote

Vote

Vote

Agreement

Fig. 6. The agreement operation for quality control

to perform a task. This operation is fundamental, since pre-selecting the right
crowd may increase the quality of results. We have different pre-selection options:

– Implicit by platform choice. Each crowdsourcing platform available today is
different, with different workers, having different skills, expecting different
behaviors, etc. Choosing which platform to use implicitly limits the worker
basis to the audience of that platform only.

– User profile and performance data. We can inspect the workers’ profile and
pre-select the characteristics of the desired workers by specifying constraints,
e.g., on nationality, age, and the like. In addition to user profile data, also
the historical performance of workers can be taken into account.

– Qualification tests. We can also ask workers to pass a task-specific qualifica-
tion test before being able to take and solve a task. We depict this pattern
in Figure 5, which creates the test and links the test with the corresponding
task. Part (b) of the figure shows how the platform internally implements
and manages the test: if the worker has passed the test, the system assigns
the task, otherwise the worker is notified with a message.

Quality control. Quality control is the evaluation of the executors’ results.
It decides about the acceptance or rejection of performed work and about the
payment. We again can implement this operation in multiple ways:

– Requester evaluation. This is the base case. The requester evaluates by him-
self the work deciding if it is acceptable or not.

– Expert evaluation. Similar to the previous case, only one person evaluates the
work, but an expert is selected from the crowd via a suitable pre-selection.
The expert evaluation is a crowd-task.



Business Processes for the Crowd Computer 11

– Top-k. This patterns asks a set of executors to vote and rank results, accept-
ing only the best k results. The top-k patterns is a combination of crowd
tasks for collecting votes from the crowd.

– Agreement. The agreement pattern involves two judges, chosen from the
crowd, which evaluate the solution. If the two judges are in an agreement,
their answer is taken as the official one. If they disagree, a third judge gets
involved. The third judge basically decides. The pattern can be modeled by
asking directly to three judges, while the model in Figure 6 is cheaper in
case of immediate agreement. The pattern requires three crowd tasks.

– Automatic. This practice injects control questions into the response form.
Control questions are questions whose answer is known a priori. Based on the
quality of the answers to the control questions, the system can automatically
assess the quality of the actual work.

– Average. Following the idea of wisdom of the crowd [4], we can also compute
the average of all collected answers (in case of numeric answers), assuming
that the average (or any other aggregation) represents the best result.

Sensibly using reusable crowdsourcing operations to instantiate a crowdsourc-
ing tactic means “programming” the crowd in an easy and effective way and
allows the developer to leverage on common crowdsourcing practice.

6 Related Work

Complex crowd tasks are generally dealt with by splitting them into smaller
tasks, combining their solutions, and constructing the integrated solution, as
in the MapReduce algorithm know from distributed computing [3]. MapReduce
applied to crowdsourcing has been proposed by Kittur et al. [6] and Kulkarni
et al. [7]. The authors propose two similar systems, allowing a crowd worker to
decide whether to solve a task as is or to split it into smaller chunks for other
workers. The worker who splits a task has the duty of recomposing the solutions
of the smaller tasks, practically providing an aggregated solution to the task
he spitted. Little et al. [9] use iterative and parallel tasks to structure complex
crowd tasks, which however does still not provide enough flexibility.

Programming the crowd like a computer is a research trend that is grow-
ing fast. A set of purpose-built languages and solutions to program the crowd
have been proposed so far. For instance, Turkit [8] is a scripting language that
allows one to create applications for solving tasks with the help of the crowd.
The approach conciliates human labor of Amazon Mechanical Turk and compu-
tations performed by a machine. The language is equipped with an execution
engine able to run crowdsourcing applications. In order to achieve a determin-
istic behavior (like applications on a regular computers), the system provides
the possibility to store the results of the executors’ works for later reuse. e.g. to
restart after a crash. This crash-and-rerun approach can save time and money
and guarantees re-produceable results in case of interruptions. Jabberwocky [1]
is another interesting approach. In this work, Ahmad et al. introduce a social



12 P. Kucherbaev et al.

computing stack that consists of a platform (Dormouse) that interacts with the
crowd, a method for splitting and aggregating tasks called ManReduce, inspired
by [6], and a scripting language (Dog) to specify the crowdsourcing logic and
also the graphical interface of the application. These scripting languages indeed
allow one to implement crowdsourcing applications from scratch. However they
do not come with reusable patterns and are not suitable for integration with
business process management practices, feasible through BPMN instead.

7 Conclusions

We leverage on the intrinsic process nature of crowdsourcing and propose a
process-based programming paradigm for what we call the crowd computer, i.e., an
information collection and processing system for crowd computing applications.
The core of the proposal is an extensible set of reusable crowdsourcing practices,
which we group into tactics (telling how to approach the crowd) and operations
(telling how to manage the crowd). The work is in an early stage, and we still
have to formalize a varied set of crowdsourcing patterns and to implement an
own crowd computer.
Acknowledgements. This work is partially funded by the BPM4People project
(http://www.bpm4people.org) of the EU FP7 SME Capacities program.

References

1. S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar. The jabberwocky programming
environment for structured social computing. In UIST’11, pages 53–64, 2011.

2. A. Bozzon, M. Brambilla, and S. Ceri. Answering search queries with crowd-
searcher. In World Wide Web Conference 2012, WWW, Lyon, France, pages
1009–1018. ACM, 2012.

3. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, Jan. 2008.

4. F. Galton. Vox populi (the wisdom of crowds). Nature, 75, 1907.
5. J. Howe. The rise of crowdsourcing. October, 14(14):1–7, 2006.
6. A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut. Crowdforge: crowdsourcing

complex work. In UIST’11, pages 43–52, 2011.
7. A. P. Kulkarni, M. Can, and B. Hartmann. Turkomatic: automatic recursive task

and workflow design for mechanical turk. In CHI EA’11, pages 2053–2058, 2011.
8. G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. Turkit: tools for iterative

tasks on mechanical turk. In HCOMP’09, pages 29–30, 2009.
9. G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. Exploring iterative and

parallel human computation processes. CHI EA’10, page 4309, 2010.
10. J. Ross and B. Tomlinson. Who are the crowdworkers? shifting demographics in

mechanical turk. CHI 10, pages 2863–2872, 2010.
11. J. Surowiecki. The Wisdom of Crowds: Why the Many Are Smarter Than the Few

and How Collective Wisdom Shapes Business, Economies, Societies and Nations,
volume http://www. Doubleday, 2004.

12. S. Tranquillini, P. Spieß, F. Daniel, S. Karnouskos, F. Casati, N. Oertel, L. Mottola,
F. Oppermann, G. Picco, K. Römer, and T. Voigt. Process-Based Design and
Integration of Wireless Sensor Network Applications. In BPM 2012, 2012.


