
ReLauncher: Crowdsourcing Micro-Tasks
Runtime Controller

Pavel Kucherbaev, Florian Daniel, Stefano Tranquillini, Maurizio Marchese
University of Trento - DISI

Via Sommarive 9, 38123 Povo (TN), Italy
{lastname}@disi.unitn.it

image_20.jpg
image_19.jpg
image_18.jpg
image_17.jpg
image_16.jpg
image_15.jpg
image_14.jpg
image_13.jpg
image_12.jpg
image_11.jpg
image_10.jpg
image_09.jpg
image_08.jpg
image_07.jpg
image_06.jpg
image_05.jpg
image_04.jpg
image_03.jpg
image_02.jpg
image_01.jpg

00:00 00:10 00:20 00:30 00:40 00:50 01:00
Time since the task launch

R
ec

ei
pt

 im
ag

e

Because of this outlier with start time 
3644 seconds, the overall 
task duration is above 1 hour 

With the outliers elimination the 
overall task duration 
will be around 6 minutes only

Figure 1. The timeline of the receipt transcription task launched on CrowdFlower with 20 data units (receipt photos). Each data unit is assigned to
a single worker. The assignment on the very right for the unit “image 11.jpg” was finished only in 1 hour after the launch of the task, because the
crowdsourcing platform kept it reserved for a certain time for a worker who left it without finishing it.

ABSTRACT
Task execution timeliness, i.e., the completion of a task
within a given time frame, is a known open issue in crowd-
sourcing. While running tasks on crowdsourcing platforms a
requester experiences long tails in execution caused by aban-
doned assignments (those left by workers unfinished), which
become available for other workers only after some expiration
time (e.g., 30 minutes in CrowdFlower). These abandoned as-
signments result in significant delays and a poor predictabil-
ity of the overall task execution time. In this paper, we pro-
pose an approach and an implementation called ReLauncher
to identify such abandoned assignments and relaunch them
for other workers. We evaluate our implementation with an
experiment on CrowdFlower that provides substantive evi-
dence for a significant execution speed improvement with an
average extra cost of about 10%.

Author Keywords
Crowdsourcing; Micro-tasks; Execution speed; Task
relaunching

ACM Classification Keywords
H.5.3. Group and Organization Interfaces: Computer-
supported cooperative work

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CSCW ’16, February 27–March 02, 2016, San Francisco, CA, USA
Copyright © 2016 ACM. ISBN 978-1-4503-3592-8/16/02...$15.00.
DOI: http://dx.doi.org/10.1145/2818048.2820005

INTRODUCTION
Crowdsourcing is the outsourcing of a unit of work to a crowd
of people via an open call for contributions [8]. Thanks to
the availability of online crowdsourcing platforms, such as
Amazon Mechanical Turk (MTurk), CrowdFlower and many
others [12, 14], the practice has experienced a tremendous
growth over the last few years [11]. Crowdsourcing demon-
strated its viability in a variety of different fields, such as data
collection and analysis or human computation – all practices
that use so-called micro-tasks, which ask workers to complete
simple assignments (e.g., label an image or translate a sen-
tence) in exchange for an optional reward (e.g., few cents or
dollars).

A requester can crowdsource work by publishing a task (a
so-called “HIT” in MTurk or “job” in CrowdFlower). The re-
quester can upload a dataset for the task and ask one or more
(W) crowd workers to process each data unit from the dataset.
For each data unit W corresponding assignments are created
that bind together the task and the data units, as well as the
workers that accept the assignment and their eventual results.
Each assignment can be in one of 3 possible states (see the
thick, solid sub-model in Figure 2 that provides a Petri Net
model expressing the execution semantics of assignments): to
be assigned – no worker joined the assignment yet, started –
a worker is working on the assignment, finished – the worker
submitted results for the assignment. The assignment dura-
tion is the time from when the assignment is started to when it
is finished. If an assignment is started but not finished within
a given timeout, the assignment expires and becomes again
available to other workers. The worker of the expired assign-
ment is no longer able to submit results and, hence, is not
rewarded.



To be 
assigned

Started Finished

Considered as 
abandoned Abandoned

exprire

assign

relaunch

expire

finish

finish

Crowdsourcing 
platform 

ReLauncher
extension

Figure 2. Petri Net modeling the execution semantics of assignments
when executed with ReLauncher (dashed) integrated into a crowdsourc-
ing platform (solid). Tokens correspond to assignments to be processed
by workers.

In our past experiments on CrowdFlower, we identified
that indeed sometimes workers leave assignments unfinished.
While in MTurk a worker can preview an assignment before
officially accepting it and start working on it, in CrowdFlower
selecting an assignment (based on title and short description
only) is already interpreted as the worker accepting the as-
signment. At this point, the worker has four options: 1) to
work on it, 2) to push the button “Give up” to state that he/she
does not want to work on it and to make it again available to
other workers, 3) to navigate away from the browser tab, or
4) to simply close the browser tab. There are various reasons
why workers may not want to work on a given assignment,
e.g., they are not sure they understood the assignment cor-
rectly (e.g., due to a sloppy description of the assignment),
they consider it too complex, they believe they would not per-
form well (e.g., because a blurred image is given for text tran-
scription), they are distracted by external events (e.g., a phone
call or children), they simply got bored and need a break, and
similar. The title of the button “Give up” is misleading and
discouraging, so workers usually just close the browser tab,
leaving the assignment pending till it expires on its own.

We call this kind of started but not finished assignments aban-
doned. Abandoned assignments stay in the started state for a
defined period of time (fixed as 30 minutes in CrowdFlower
and as 1 hour but adjustable in MTurk), during which no
other workers can start working on the same assignment. This
pattern is for instance visible in Figure 1, where the assign-
ment for the image “image 11.jpg” (on the very right) expired
twice, which resulted in the assignment being finished only
after 1 hour. This is the execution pattern that leads to the
problem of long tails in the overall execution of a task.

In this paper, we propose an approach to identify likely aban-
doned assignments during runtime so as to make the corre-
sponding data units available to other workers earlier and,
eventually, to speed up the overall execution time of tasks.
We describe ReLauncher, an implementation of the approach
for CrowdFlower, and report on it’s performance.

RELAUNCHER
Without knowledge of the behavior of workers, it is not pos-
sible to unequivocally identify abandoned units, as the aban-
doning takes place in the worker’s browser, i.e., the client
side, an environment we don’t have access to. We thus sim-
plify the challenge of identifying abandoned assignments as
the challenge of identifying a maximum assignment duration
MaxDur beyond which we consider assignments as aban-
doned. Differently from the common static timeout of as-
signments, we calculate MaxDur dynamically during run-
time taking into account the real dynamics of a task.

Approach
The dashed model part in Figure 2 illustrates the new ex-
ecution semantics of assignments. ReLauncher periodi-
cally checks if started assignments were started earlier than
MaxDur time ago. Identified slow assignments are re-
launched, which means that they are moved to a considered
as abandoned state, while a copy of the assignments is cre-
ated in the to be assigned state, making them again available
to other workers. If the assignments considered as abandoned
are really abandoned by the worker, they expire and move to
the abandoned state without making them again available to
other workers. While if these assignments are instead just de-
layed, the workers eventually finish them, their contribution
is registered, and they are rewarded. With the duplication of
the assignment ReLauncher tries to speed up the execution of
the assignment, as there are now two workers that work in
parallel on the same assignment.

From our past experiments conducting tasks (receipt tran-
scription with 300 data units) on CrowdFlower we identified
that assignment durations (Figure 3A) follow a log-normal
distribution (p-value = 0.275 and p-value = 0.818 if only du-
rations between 1% and 99% percentiles are taken). Because
the assignment start time in average is short (workers start
tasks after they are published in a matter of seconds) com-
pared to the assignment duration time, there is a correlation
(0.627) between the order in which the assignments are fin-
ished (assignment index) and the assignment duration time.
The black dots on Figure 3B represent local maximum du-
rations before a given assignment index. In this paper, our
goal is not to model assignment durations precisely, but to
find a simple way to eliminate assignments with very long
durations. We thus compute a linear regression from the lo-
cal maximums and obtain a slope = 1.667 and an intercept
= 32.839, with a p-value close to 0 (the black straight line
in Figure 3B). This means assignment durations grow mono-
tonically with their index, and we can estimate the slowest
allowed duration MaxDur as the value of the linear regres-
sion maximum index (in our case index = 300), which in our
experiment reported in figure 2B predicts a MaxDur of 533
seconds. Algorithm 1 formalizes the technique.

The slope of the cumulative distribution of the assignment
completion times (Figure 3C) indicates the speed of the task
completion. There is a moment where the speed starts slow-
ing down (tangent B). This would be the right time to identify
abandoned assignments and start relaunching them. Before
that time, it is not necessary to intervene, as assignments are



0.000

0.002

0.004

0.006

0 125 250 375 500 625 750 875 1000
Assignments duration, seconds

D
en

si
ty

●
●
●●
●●
●

●●●
●
●●
●
●

●

●

●●●

●

●
●●
●

●

●

●

●●●

●

●
●

●

●

●●

●●
●

●

●
●

●●
●

●
●

●

●

●

●●
●

●
●

●

●
●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●●
● ●

●●●
● ●●

●
●●

● ●●
● ● ●

● ●
● ● ●

●●
●

●

●
●

●
●

●

●

●

●

duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837duration = 1.667index + 32.837

max duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 secondsmax duration limit = 533 seconds

0

250

500

750

1000

0 50 100 150 200 250 300
Assignments index

As
si

gn
m

en
ts

 d
ur

at
io

n,
 s

ec
on

ds

A)
0.00

0.25

0.50

0.75

1.00

00:00 00:30 01:00
Time since the task launch, hours:mins

Ta
sk

 c
om

pl
et

en
es

s

tangent A

tangent B

C)B)
Figure 3. The runtime behavior of crowdsourced receipt transcription task with 300 data units to be processed: A) assignment duration distribution
(log-normal), B) assignment duration dependency on index of assignment, C) cumulative assignments start (blue) and completion (black).

Algorithm 1 Last Assignment Duration Estimation

procedure ESTIMATEMAXDURATION(durs,N,W) . durs
– an array of durations of already finished assignments, N
– number of data units, W – number of workers requested
to process each data unit

maxValues← array()
maxIndexes← array()
i← 1
while i < length(durs) do

if (length(maxValues) == 0 or durs[i] >
maxValues[length(maxValues)]) then

maxValues.push(durs[i])
maxIndexes.push(i)

i← i + 1
lr ← linearRegression(maxValues,maxIndexes)
slope← lr.slope
intercept ← lr.intercept
MaxDur ← N ×W × slope + intercept
return MaxDur

already completed speedily. Also, if we start too early we
may classify more assignments as abandoned than necessary
(extra cost); if we start too late we may delay the overall task
execution too much. From our experiments on CrowdFlower
we know that execution usually starts slowing down around
85% of task completion, while this percentage was never be-
low 75%. In order to be on a safe side, in the following we use
a heuristic approach and start relaunching assignments after
70% of task completion.

ReLauncher could relaunch a given assignment infinite times,
since a relaunched assignment can be relaunched again,
again, and again (Figure 2). In order to prevent an infinite
relaunching and significant extra costs, we stop relaunching
assignments for a same data unit (i) when at least W assign-
ments are finished (the unit was processed as expected), or
(ii) when a given relaunching budget is reached (despite re-
launching, the unit could not be processed).

Implementation
We implemented ReLauncher as described above for Crowd-
Flower as a web application using AngularJS for the front-

end, ExpressJS for the back-end and R for data processing
and graph generation. The application is open-source and
publicly available1 for the benefit of the community.

On CrowdFlower a requester cannot obtain information about
individual started assignments but only observe the state of
data units. A data unit can be in one of 4 possible states:
available – it can still be assigned to workers, assigned – all
W assignments were created and new workers can no longer
join, processed – all assignments are finished and cancelled –
the data unit can not be assigned to any workers and it is no
longer expected to be processed. While it is technically pos-
sible to make a data unit available again for new assignments
by rejecting finished ones, this would be unfair and unethical,
as there is no evidence a given worker violated any rule. We
therefore simply relaunch data units, rather than assignments.
That is, when we see that a unit is in the assigned state for a
time longer than MaxDur we inactivate the unit (we “cancel”
it, in CrowdFlower terminology), which prevents the platform
from expiring respective assignments and making them avail-
able again while still allowing workers to finish their ongoing
assignments, and append a copy of the data unit to the dataset
other workers can work on.

assignment 
finished
(paid)

assignment 
expired

(not paid)

data unit 
processed

data unit 
cancelled

U1 U2 ... Un-1 Un Un+1

Initial 
data units

Relaunched
data units

Un+2 Un+3

child child child

parent parent parent

Figure 5. The chains of data units created by ReLauncher.

In order to keep track of the relaunching dynamics, we main-
tain relaunched data unit chains (Figure 5), where a newly
created unit has a “parent” link to the original unit, and the
original unit has a “child” link to the new unit. As soon as the
Wth assignment of a given unit is finished in a chain, we use
the “parent” and “child” links to cancel all related units.

1https://github.com/pavelk2/crowd-relauncher

https://github.com/pavelk2/crowd-relauncher


A) B) C)

Figure 4. Screen shots of the ReLauncher implementation: A) authorization page, B) task listing page, and C) launched task information page.

In order to use ReLauncher, requesters need to provide Re-
Launcher with their CrowdFlower API key (Figure 4A). This
key is not stored anywhere in the system and has to be en-
tered every time a requester uses ReLauncher. When a key
is inserted, ReLaucher displays the list of tasks (Figure 4B)
created by the requester on CrowdFlower. The requester can
launch any task that is not yet completed. When a task is
launched, ReLauncher shows the task information (Figure
4C) along with a graph plotting the current finished assign-
ments and an estimated maximum assignment duration time.

EVALUATION
We deployed the same task with and without using Re-
Launcher, repeating the experiment 5 times for better robust-
ness of the study. The task asked workers to transcribe a re-
ceipt by filling four textual fields (company name, address,
date of purchase, total amount) given photo of the receipt
(Figure 7) for a reward of USD 0.10. Each task contained 100
receipt photos (100 data units), each receipt photo needed to
be transcribed by a single worker (W = 1). The total cost of
the experiment was USD 138.48.

Figure 7. The user interface of the receipt transcription task.

The cumulative executions of the experiment are shown in
Figure 6, where the blue lines represent started assignments
and the black lines represent finished assignments. In the
same figure: tcompletion – the overall task completion time in
seconds, Arelaunched – the number of relaunched assignments,
and Aextrapaid – the percentage of extra assignments paid be-
cause of relaunching. The aggregated results are given in Ta-
ble 1, where µ is the mean value and s the standard deviation.
Workers on CrowdFlower can leave a feedback to a task. Our
task received consistently good marks above 4 out of 5.

The collected data show that with ReLauncher tasks are com-
pleted more than 3 times faster (large effect size according

to Cohen’s d statistic: d = 2.91), with an average extra
cost of around 10.4%. A Welch’s t-test shows that the mean
task completion time with ReLauncher is shorter than with-
out (p = 0.004, d f = 4.432). In order to obtain this result, an
average of 15.8% of the assignments were relaunched, many
of them still producing results in the end (the 10.4% that de-
termine the extra cost). This leads to two immediate conclu-
sions: while the approach described in this paper provides
substantive benefits in terms of time reduction and there is
still room for improvement, decreasing the amount of false
positive relaunches may further decrease the extra cost.

Earlier we explained when we start relaunching assignments
(after 70% of assignments are completed). For the sake of
this paper, we applied this simple heuristic based on histori-
cal data. It is however clear that identifying with higher preci-
sion the best moment when to intervene may further save both
time and money. It is however good to note that already with
70% of assignments completed, we are able to compute good
estimates of the maximum task durations. Better identifying
the time of intervention will provide the prediction algorithm
with even more data.

As for the generalizability of the described approach, it is im-
portant to note that the whole work we present in this paper
does not make any assumption regarding the type of task that
is crowdsourced. All the ReLauncher needs is monitoring the
runtime behavior of assignments (start and completion times,
durations). The heuristic to start relaunching assignments af-
ter 70% of them have finished can be substituted with a func-
tion that is able to dynamically identify the turn point in Fig-
ure 2C. Further, the approach is based on pure statistics, and
the linear regression model considers local maximum dura-
tion times. This means that also tasks with highly variable

Without ReLauncher With ReLauncher
Task completion

time
µ = 3146 seconds
s = 1037 seconds

µ = 948 seconds
s = 241 seconds

Assignments
relaunched

N/A
µ = 15.8
s = 6.9

Extra costs N/A
µ = 10.4%
s = 5.07%

Table 1. Performance comparison of evaluation experiments without
and with ReLauncher.



1) Without ReLauncher 2) With ReLauncher

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

#1
#2

#3
#4

#5

00:00 00:30 01:00 00:00 00:30 01:00
Time since the task launch, hours:mins

Ta
sk

 c
om

pl
et

en
es

s

tcompletion = 3854 sec
Arelaunched = 0
Aextrapaid = 0

tcompletion = 3783 sec
Arelaunched = 0
Aextrapaid = 0

tcompletion = 2195 sec
Arelaunched = 0
Aextrapaid = 0

tcompletion = 4047 sec
Arelaunched = 0
Aextrapaid = 0

tcompletion = 1849 sec
Arelaunched = 0
Aextrapaid = 0

tcompletion = 679 sec
Arelaunched = 13
Aextrapaid = 9%

tcompletion = 738 sec
Arelaunched = 8
Aextrapaid = 3%

tcompletion = 1153 sec
Arelaunched = 27
Aextrapaid = 17%

tcompletion = 949 sec
Arelaunched = 15
Aextrapaid = 11%

tcompletion = 1221 sec
Arelaunched = 16
Aextrapaid = 12%

Figure 6. Cumulative assignments start (blue) and assignments completion (black) without and with ReLauncher.

assignment durations (e.g., tasks with variable lengths of data
units) can be managed. Of course, the higher the variability,
the higher the estimated MaxDur.

Also, in principle, it could be an option to maintain a knowl-
edge base of regression models for different task types, e.g.,
not to have to compute the model at runtime, but this would
be helpful only if we had to start relaunching tasks already in
the very beginning of the overall task execution where there
are not yet many assignments finished to compute the model
from. But we have shown that it does not make sense to inter-
vene before 70% or more assignments have completed, which
in turn provides ReLauncher with enough data and time to
compute task-specific regression models on the fly.

As a last consideration, we would like to emphasize that Re-
Launcher does not penalize any worker and that by no means
it prevents workers that seriously work on an assignment from
submitting results and obtaining the respective reward. We
admit that for instance tasks that require significant network
activity (e.g., collecting URLs or content from many differ-
ent web pages) could potentially result in considering assign-
ments by workers with slow network connections as aban-
doned, while instead they are still working. However, as said,
this would happen without any side-effect on the workers and
only cause the ReLauncher to manage more relaunched as-
signments. However, it is also intuitive that workers with
slow network connections would very likely not choose to
work on tasks that ask for significant networking activity.

RELATED WORK
Researchers tried various approaches to improve task execu-
tion speed, such as different motivation strategies for workers
or introducing interventions to the execution process itself,
also aiming at crowdsourcing complex work.

In [7] the authors identified that on MTurk an increased re-
ward actually decreases the demand for the task, as workers
perceive the task as more complex. The authors identified
that the task completion time monotonically decreases for in-
creasing reward values. Also, those working on tasks with

higher rewards perceive the value of their work to be greater,
which does not motivate them more than workers working on
tasks with lower rewards [10]. On MTurk, the tasks with a
high amount of units attract most workers [5, 6]. Still there is
a problem of long tails in task execution, as also these tasks
attract less workers towards their end. The problem can be
solved, for example, by paying an extra bonus to workers
who finish a predefined amount of assignments [6]. Another
approach to address the long tails is by adjusting the tasks
reward according to the amount of not finished assignments
a task has left and the time passed since its launch [4]. A
survival analysis based model is proposed to predict tasks
completion times on MTurk based on various task and mar-
ketplace attributes [13]. This model is used in [7] to predict
what reward amount to set for a task to have it completed by
a desired time. In [1] the authors proposed a retainer model
paying workers a small reward to keep them waiting and to
respond to a real task as soon as it becomes available. With
ReLauncher we do not provide any extra motivation for work-
ers to speed up execution of individual assignments; instead,
we intervene at runtime to relaunch assignments that we iden-
tify as abandoned, which would slow down the overall task
execution time.

Works that specifically focus on execution time are the fol-
lowing: TurkPrime (https://www.turkprime.com/) has a
task restart feature that puts tasks back on top of the tasks
listing page on MTurk, still it requires direct involvement
of the requester to monitor and manually restart tasks. In
[3], the authors allow the requester to define a set of rules
that, depending on the workers’ performance, can trigger dif-
ferent actions, adjusting the execution process according to
the requester’s requirements. A sensible design of low-level
rules could be able to achieve a functionality similar to Re-
Launcher. Then there are approaches, such as TurKit [9],
that allow a requester to program a logic/algorithm to execute
multiple tasks. While these approaches help crowdsourcing
work easier, they do not address the problem of delays in
tasks execution. REACT [2] is a system that dynamically as-
signs tasks to different workers in order to meet timeliness re-

https://www.turkprime.com/


quirements and to make sure that given quality standards are
met. Yet, the approach proposes the matching of workers with
tasks based on worker profiles, which only the operators of
crowdsourcing platforms have access to and requesters can-
not benefit from. ReLauncher, instead, runs with commonly
available information only and, more importantly, does not
require any additional input from the requester.

LIMITATIONS AND FUTURE WORK
ReLauncher is a simple yet tangible contribution to the state
of the art in crowdsourcing: it is able to effectively reduce
execution times of tasks without any additional configuration
or input from the requester without affecting the work as per-
ceived by workers. The effect of ReLauncher was statisti-
cally significant in the described experiment conducted with
CrowdFlower. ReLauncher showed a 3-times improvement
of the overall task execution time at an average extra cost
of 10%. The approach works as a client of state-of-the-art
crowdsourcing platforms (using their APIs), but it could eas-
ily also be incorporated directly inside the platforms.

Limitations
The current implementation is limited to CrowdFlower, and
the evaluation is based on one task type only (transcribing
receipts). In order to ascertain the generalizability of the
approach, additional experiments with different task types
would be helpful. While we did some additional experiments
with the same task using fewer than 100 data units (obtain-
ing similar results as described in this paper), we did not test
how ReLauncher works with bigger datasets. Also, we nei-
ther used test questions to select workers nor did we assess
the quality of results in our experiments, as assessing quality
is a research topic in its own that we would like to investigate
further in our future work. All experiments were conducted
with a fixed reward of USD 0.10; we did not further study the
effect of varying reward amounts. Finally, it is important to
acknowledge that ReLauncher is not able to compensate for
the lack of task selection due to poor task design.

Future work
Next, we plan to conduct other experiments to test Re-
Launcher with different task types, different dataset sizes, and
different algorithms for the identification of when to start re-
launching assignments. We also plan to try to collect client-
side worker activity data, e.g., by injecting JavaScript code
into the task user interface, to enable ReLauncher to know
exactly whether a worker is active or not and to increase the
efficiency of the relaunching algorithm. If we were able to
relaunch only those assignments that were really abandoned,
ReLauncher could operate at zero extra cost. We also would
like to study whether it is possible to use the runtime con-
troller to identify workers who do not perform tasks as re-
quested. For example, we will specifically look into the qual-
ity of those assignments that are on the left side of the dura-
tions distribution (are they fast because workers did not fol-
low all instructions?). Of course, it would also be useful to
get in touch with workers to investigate also qualitatively the
reasons for their performance, spanning from very slow to
very fast executions and from low to high quality. Similarly, it

would be interesting to study which requesters running which
types of tasks could benefit most from ReLauncher.

ACKNOWLEDGEMENTS
The authors thank Wil Stevens from CrowdFlower and the
hundreds of workers who participated in the experiments.

REFERENCES
1. Michael S. Bernstein, Joel Brandt, Robert C. Miller, and

David R. Karger. 2011. Crowds in Two Seconds:
Enabling Realtime Crowd-powered Interfaces. In UIST
2011. 33–42.

2. Ioannis Boutsis and Vana Kalogeraki. 2013.
Crowdsourcing under Real-Time Constraints. In IPDPS
2013. 753–764.

3. Alessandro Bozzon, Marco Brambilla, Stefano Ceri, and
Andrea Mauri. 2013. Reactive crowdsourcing. In WWW
2013. 153–164.

4. Dana Chandler and John Joseph Horton. 2011. Labor
Allocation in Paid Crowdsourcing: Experimental
Evidence on Positioning, Nudges and Prices. In
HCOMP 2011.

5. Lydia B. Chilton, John J. Horton, Robert C. Miller, and
Shiri Azenkot. 2010. Task Search in a Human
Computation Market. In HCOMP 2010. 1–9.

6. Djellel E. Difallah, Michele Catasta, Gianluca
Demartini, and Philippe Cudré-Mauroux. 2014.
Scaling-up the Crowd: Micro-Task Pricing Schemes for
Worker Retention and Latency Improvement. In
HCOMP 2014.

7. Siamak Faridani, Bjoern Hartmann, and Panagiotis G.
Ipeirotis. 2011. What’s the Right Price? Pricing Tasks
for Finishing on Time.. In HCOMP 2011.

8. Jeff Howe. 2008. Crowdsourcing: why the power of the
crowd is driving the future of business (1st ed.). Crown
Publishing Group, New York, NY, USA.

9. Greg Little, Lydia B. Chilton, Max Goldman, and
Robert C. Miller. 2010. TurKit: Human Computation
Algorithms on Mechanical Turk. In UIST 2010. 57–66.

10. Winter Mason and Duncan J. Watts. 2009. Financial
Incentives and the ”Performance of Crowds”. In
HCOMP 2009. 77–85.

11. Massolution. 2013. The crowd in the cloud: exploring
the future of outsourcing. White Paper. (January 2013).

12. Donna Vakharia and Matthew Lease. 2015. Beyond
Mechanical Turk: An Analysis of Paid Crowd Work
Platforms. In Proceedings of the iConference.

13. Jing Wang, Siamak Faridani, and Panagiotis G. Ipeirotis.
2011. Estimating Completion Time for Crowdsourced
Tasks Using Survival Analysis Models. In CSDM 2011.
31–34.

14. Man-Ching Yuen, I. King, and Kwong-Sak Leung. 2011.
A Survey of Crowdsourcing Systems. In
PASSAT-SocialCom 2011. 766–773.


	Introduction
	ReLauncher
	Approach
	Implementation

	Evaluation
	Related work
	Limitations and Future Work
	Acknowledgements
	REFERENCES 

