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Universitätsstraße 38, 70569 Stuttgart, Germany
{falazi, breitenbuecher, leymann}@iaas.uni-stuttgart.de

Abstract. Today’s blockchain technologies focus mostly on isolated,
proprietary technologies, yet there are application scenarios that ask
for interoperability, e.g., among blockchains themselves or with external
applications. This paper proposes the Smart Contract Locator (SCL)
for the unambiguous identification of smart contracts over the Internet
and across blockchains, and the Smart Contract Description Language
(SCDL) for the abstract description of the external interface of smart
contracts. The paper derives a unified metamodel for blockchain smart
contract description and equips it with a concrete, JSON-based descrip-
tion language for smart contract search and discovery. The goal of the
proposal is to foster smart contract reuse both inside blockchains and
through the integration of smart contracts inside enterprise applications.
The idea is inspired by the Service-Oriented Architecture (SOA) and
aims to provide a high-level, cross-blockchain interoperability layer.
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1 Introduction

A blockchain is a distributed ledger, that is, a log of transactions that provides
for their persistency and verifiability [13]. Transactions are cryptographically
signed instructions constructed by a user of the blockchain [15] and directed to-
ward other parties in the blockchain network, for example the transfer of cryp-
tocurrency from one account to another. A transaction typically contains a pre-
defined set of metadata and an optional payload. Transactions are grouped into
so-called blocks; blocks are concatenated chronologically. A new block is added
to the blockchain using a hash computed over the last block as a connection
link. A consensus protocol enables the nodes of the blockchain network to create
trust in the state of the log and makes blockchains inherently resistant to tam-
pering [9]. Smart contracts [14] extend a blockchain’s functionality from storing
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transactions to performing also computations, for example, to decide whether
to release a given amount of cryptocurrency upon the satisfaction of a condition
agreed on by multiple partners.

Blockchains can be broadly categorized into permissionless and permissioned.
Early blockchain platforms, such as Bitcoin [13] and Ethereum [15], were permis-
sionless in the sense that participating in the protocol with any role is open for
everyone. These platforms favor absolute decentralization at the cost of having
relatively weak privacy and performance capabilities. Therefore, permissioned
blockchains, such as Hyperledger Fabric [1], Hyperledger Sawtooth [10] and
Corda [3], were introduced as an alternative that guarantees data confidentiality
and ensures better performance. However, these desirable properties come with
the price of losing some degree of decentralization, since joining the network
becomes restricted and under the control of a single entity.

Both kinds of blockchains have their use-cases that can sometimes coincide.
For example, in a scenario that involves a consortium of enterprises partially
trusting each other, one or more permissioned blockchain networks can be used
to guarantee to all participants that the collaborative process itself is being
conducted exactly as designed, while ensuring good performance and privacy.
However, to provide a similar guarantee to external entities that do not trust
the consortium as a whole, such as auditing authorities, it is not enough to
use permissioned blockchains, since they favor privacy over transparency and
cannot prove that some transactions were not removed from the ledger history
due to a malicious agreement between the consortium members. In that case,
the additional involvement of permissionless blockchains can provide the desired
guarantees. Therefore, we see that there is no single blockchain technology that
is capable of solving all potential use-cases, which means that existing and new
variations of blockchains would continue to co-exist, and end-users would likely
become involved in a mixture of them in relatively complex scenarios [6].

To integrate blockchains into existing processes, using, e.g., business process
management systems [5,6], their smart contracts need to be used, since, from an
external viewpoint, the public functions of smart contracts are the access-points
at which blockchains can be utilized by other systems, i.e., they are the integra-
tion points of blockchains. However, as mentioned earlier, multiple permissioned
and permissionless blockchain platforms might need to be integrated in the same
use-case. The problem here is that smart contracts of different blockchains are
invoked using different mechanisms, protocols, and data formats, which signif-
icantly raises the integration barrier for systems wishing to utilize them, since
developers need to be aware of these variations making the integration process
time-consuming and error-prone. Furthermore, the specific smart contracts rele-
vant for a given use-case need to be identified, which is not a straightforward task,
because information regarding existing smart contracts of various blockchains is
not uniformly available for developers.

In this paper, we extend our previous approach [8], which introduced an
Ethereum-specific smart contract description format, to a wider set of blockchain
technologies. Here, we propose a Service-Oriented Architecture (SOA)-inspired
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style of integration: We first analyze state-of-the-art blockchain platforms and de-
rive cross-blockchain addressing and description requirements (Section 2). Then,
we introduce a smart contract addressing format, the Smart Contract Locator
(SCL), as a specialization of the generic URL scheme that facilitates the un-
ambiguous identification of smart contract functions, both externally over the
Internet and internally from within the blockchain network (Section 3). Then,
we define a unified metamodel capable of describing the public interface of smart
contracts of multiple permissioned and pemissionless blockchains; finally, we
equip the metamodel with a JSON-based language called the Smart Contract
Description Language (SCDL) for uniform smart contract descriptors that can
be stored in a specialized registry to provide the functionality of smart con-
tract search and discovery (Section 4). We close the paper with related works in
Section 5 and a discussion of our proposal and future works in Section 6.

2 Analysis of Smart Contracts

In [4], we analyzed contract types, interaction styles, interaction protocols, data
formats and blockchain-internal description formats of smart contracts, and
demonstrated the suitability of smart contracts for the implementation of a
smart contract-based, service-oriented architecture. Next, we study the specifics
of smart contract interfaces for contract description.

2.1 Fundamentals of smart contracts

Most blockchain platforms today support different programming languages for
the implementation of smart contracts, ranging from general-purpose languages
like Java, C++, Python, JavaScript, Golang to platform-specific languages like
Solidity for Ethereum or Bitcoin Script for Bitcoin [4]. Most of these languages
are object-oriented and, hence, a smart contract can be seen as an object that
has an identity, a behavior, a state, and events. Typically, smart contracts
are executed using a blockchain-specific virtual machine that replicates the
same “computer” on all nodes of the blockchain network. The most famous
and used virtual machine today is the Ethereum Virtual Machine (“EVM”,
https://py-evm.readthedocs.io) developed by Ethereum and used by several
other platforms for smart contract execution. For its execution, a smart contract
must be deployed on the blockchain and instantiated in the virtual machine. This
process creates an instance of the contract – along with a unique contract iden-
tifier – and initializes its state. After this initialization, the contract becomes
accessible to possible clients who can invoke the contract according to its exter-
nal interface (the functions made available) by submitting suitable transactions
that carry the invocation in their body. Invocations may come from other smart
contracts inside the same blockchain or from the outside, e.g., from enterprise
applications. How exactly contracts are invoked is, again, platform dependent.

Bringing together the different models of smart contracts that have emerged
so far, the most important characteristics can be summarized as follows (we
analyze concrete technologies in the next subsection):

https://py-evm.readthedocs.io
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– Identity : This is typically defined by a specific address that corresponds
to the deployment location of the contract. Each platform has its own way
to compute this address. In some blockchains contracts are treated like any
other account, and the address is an account identifier ; in other platforms
they are considered immutable states (variables) identified by a virtual mem-
ory address. The address does not only distinguish different contracts from
each other, but also different, independent instances of a same contract.

– State : This refers to the properties (variables) internal to the contract that
are persistent across multiple invocations. A contract can be immutable,
where the state cannot be changed after its initialization, or mutable, where
the state can be modified during the contract’s life. Immutable contracts are
typically used as transaction validators that check conditions only; mutable
contracts can implement any kind of business logic.

– Functions: These implement the operations a contract can perform and,
thus, its behavior. A function usually has a scope that tells the visibility
of the function (e.g., private vs. public or blockchain-internal vs. -external),
a name, a number of input parameters, and optional return parameters. A
function is called “pure” if return values depend only on input values and it
does not produce any side effects on the state; it is called “view” function
if it provides read-only access to state. Some blockchain platforms allow the
direct invocation of functions using their name, others advocate the use of a
single dispatcher function to forward input values to target functions.

– Events: An event occurs when a contract sends a signal that an action
or state change has taken place upon its invocation. Events allow external
applications to monitor the state of the contract, while the blockchain plat-
form allows applications to subscribe to or unsubscribe from events. Events
usually have a name and a set of parameters that represent the payload of
the event. Some platforms generate system events, others support developer-
defined custom events. Custom events may require an explicit declaration of
the event and its parameters (the event prototype) and can be launched
programmatically; system events are launched automatically. Depending on
the platforms single or multiple events may be launched at a time.

– Description : For developers to understand the exact model of a given smart
contract, since smart contracts are deployed on the blockchain, the developer
could inspect the deployed code, but such is typically a compiled version and,
hence, not useful to derive how to interact with it. Some platforms in addition
generate descriptive metadata at compilation time that may provide both
the actual source code and an abstract summary of the external interface of
the contract, often called Application Binary Interface (ABI).

Ideally, for a given smart contract, all these aspects are specified in a proper
descriptor and made accessible online (e.g., Ethereum proposes Swarm, https:
//ethersphere.github.io/swarm-home/, to host such metadata), yet as of today,
there is no commonly used registry for storing and indexing metadata or de-
scriptors for smart contracts of various blockchain platforms, let alone a uniform
description language.

https://ethersphere.github.io/swarm-home/
https://ethersphere.github.io/swarm-home/
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2.2 Comparison of blockchain platforms

In order to understand the state of the art of smart contract support by blockchain
platforms, we have selected platforms for comparison from the two major blockchain
families, permissionless and permissioned. As mentioned earlier, permissionless
blockchains allow anyone to participate and access information stored in the net-
work, whereas permissioned blockchains allow only invited nodes to participate
and access data. The selected platforms are:

– Bitcoin (https://bitcoin.org), the first permissionless blockchain platform
introduced with limited support for smart contracts. Contracts are used as
validators, have an immutable state and are used to lock/unlock values only.

– Ethereum (https://www.ethereum.org), the permissionless platform that first
introduced Turing-complete smart contracts that, in principle, allow the im-
plementation of arbitrary application logic.

– Hyperledger Fabric (https://www.hyperledger.org/projects/fabric), a per-
missioned blockchain platform developed by The Linux Foundation that
leverages on container technology to host smart contracts called “chaincode”.

– Neo (https://neo.org), also known as the “Ethereum of China,” with support
for multiple digital assets and smart contracts; Neo is permissionless.

– EOSIO (https://eos.io), a more recent permissioned/permissionless platform
with a special focus on transaction throughput for businesses.

– Hyperledger Sawtooth (https://sawtooth.hyperledger.org), another permis-
sioned blockchain platform from the The Linux Foundation that is highly
modular and configurable. It introduces transaction families, which are pu-
luggable, user-defined components, as the way to define smart contracts.

Moreover, Ethereum is the “father” of many other blockchain platforms,
such as Qtum (https://qtum.org), Ubiq (https://ubiqsmart.com), Rootstock
(https://www.rsk.co) and others. We omit them from the comparison, as they
all comply with Ethereum’s smart contract model and use the EVM.

Table 1 summarizes how the chosen platforms implement smart contracts.
For the comparison, we use the smart contract characteristics described earlier;
we do not consider aspects like access policy, consensus protocol, performance or
similar, as these do not affect smart contracts’ external interfaces. The analysis
aims to provide a picture that abstracts away from implementation languages
and instead emphasizes the addressing and functional interface perspective.

Addressing: Looking at how smart contracts are identified (first dimension),
it is evident how contracts are referenced differently across different platforms.
While there may be platform-specific reasons for this (e.g., Bitcoin does not have
the concept of accounts), conceptually – from an external point of view – it must
be possible to do so in an abstract, uniform manner.

Interface: State, if not immutable, is manipulated through functions, which
are only visible to consumers if they are public; Ethereum and EOSIO further
distinguish between functions that are internal to the blockchain (invocable only
by contracts of the same blockchain) and functions that are external (invocable
also by agents outside the blockchain). Most of the platforms support launching

https://bitcoin.org
https://www.ethereum.org
https://www.hyperledger.org/projects/fabric
https://neo.org
https://eos.io
https://sawtooth.hyperledger.org
https://qtum.org
https://ubiqsmart.com
https://www.rsk.co
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Table 1. Comparison of smart contract support by most representative blockchain
platforms from an external perspective.

Platform Identity State Functions Events Description

Bitcoin

contracts specify how 
unspent transaction 
outputs (UTXO) can be 
used; identified by 
UTXO address

set when 
instantiating 
contract; 
immutable

public; can be 
invoked directly — —

Ethereum

contracts implement 
generic application 
logic; have own 
accounts

stored in 
contracts; 
modified using 
functions

public/private and 
blockchain-
internal/-external; 
invoked directly

multiple custom 
events possible; 
explicit declaration 
of event prototype

contract meta-
data and Appli-
cation Binary 
Interface (ABI)

Hyper-
ledger 
Fabric

contracts (chaincode) 
implement generic 
application logic and 
are addressed using an 
ID

stored in 
contracts; 
modified using 
functions

public/private; 
invoked using 
dispatcher 
function

max one custom 
event per 
invocation; no 
explicit event 
prototype needed

Chaincode 
Interface (CCI) for 
language-neutral 
description

Neo
contracts implement 
generic application 
logic; have own 
accounts

stored in 
contracts; 
modified using 
functions

public/private; 
invoked either 
directly or via a 
dispatcher 
(recommended)

multiple custom 
events possible; 
no declaration 
needed

contract metadata 
and Neo ABI

EOSIO

generic; hosted by 
EOSIO accounts (1-
to-1 relationship) and 
identified by human-
readable unique string

stored in the 
contract, 
modified using 
functions 
(actions)

public/private and 
blockchain-
internal/-external; 
invoked using 
dispatcher func.

multiple system 
events possible; 
no custom events

contract metadata 
and EOSIO ABI

Hyper-
ledge 
Sawtooth

contracts (transaction 
families) implement 
generic application 
logic; addressed using 
a 35-byte hex hash of 
transaction family name

stored in 
transaction 
families, 
modified using 
functions

public; invoked 
only from external 
apps via a REST 
call to custom 
transaction family 
processor

multiple custom 
events possible; 
explicit declaration 
of event prototype

public interface of 
a transaction 
family defined by 
the developer via a 
set of protobuf* 
message types

* https://developers.google.com/protocol-buffers/ 

�1

custom events to communicate with external agents; only Bitcoin and EOSIO
support either no events or only system events. From a description point of view,
it is interesting to note that most platforms are able to generate some descrip-
tive metadata at compile time, along with an ABI that provides a summary of
function prototypes – both however providing different kinds of information and
focusing on blockchain-specific aspects. Yet, as the table also shows, there are
significant similarities across platforms, which hints at the possibility to abstract
external interfaces and uniformly describe them for uniform access.

3 Smart Contract Locator (SCL)

Internally, all platforms provide for smart contract addressing or identification;
so, there is no need for intervention. Instead, Figure 1 (solid, black components
on the top) illustrates our minimal, architectural assumptions for the specifica-
tion of the Smart Contract Locator (SCL), which is our proposal for uniformly
addressing smart contracts from the outside of their blockchains: an external
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Provider
Consumer

Registry

invokes smart contracts

publishes 
descriptors

searches and 
retrieves 
descriptors

Gateway Internet
     External 
consumer

Blockchain

Target smart
contract SCL

Blockchain address

Internal consumer

SCDL registry

a

b

Fig. 1. Conceptual components for smart contract addressing (solid lines) for (a)
blockchain-internal consumers and (b) blockchain-external consumers with service-
oriented architecture for smart contracts (thin, dashed lines).

consumer (e.g., an enterprise application) that wants to invoke a target smart
contract (e.g., a currency exchange app) deployed inside a blockchain network
(e.g., Ethereum) to which it does not have own access (it does not own any node
of the network) may have to cross the Internet to reach a so-called gateway, a
web-accessible agent that is able to mediate between the external consumer and
the target smart contract. SCL tells the external consumer how to reach that
gateway and how to identify the target smart contract.

We intentionally limit the use of SCL to smart contract addressing only; the
identification of the functions to be invoked and the passing of suitable param-
eter values will be done using the payload of the messages exchanged between
consumer and smart contract (e.g., using http POST messages). We assume that
the communication channel from the external consumer to the gateway is prop-
erly secured using state-of-the-art security mechanisms like https, access control,
and encryption.

Now, given the IETF specification of the generic URL format [2]:

URL = scheme:[userinfo@]host[:port]path[?query][#fragment]

and the preliminary proposal for smart contract addressing in [6] (see Section
5), we define an SCL as a specialization of a URL composed of a standard URL
(up to the path element included), which identifies the gateway, and of an SCL
query, which identifies the target smart contract inside the blockchain network:

SCL = scheme:[userinfo@]host[:port]path"?"scl_query
scl_query = "blockchain="bc"&blockchain-id="id"&address="addr

bc = "ethereum" | "bitcoin" | "fabric" | "eosio" | ...

id = NetworkIdentifier // not further detailed here
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addr = eth_addr | bit_addr | fab_addr | eos_addr | ...
eth_addr = 40ByteHexString // not further detailed here
bit_addr = Bech32Address // not further detailed here
fab_addr = PathString // not further detailed here
eos_addr = 12CharacterString // not further detailed here

The SCL extension of URLs thus specifies (i) which type of blockchain is
addressed, (ii) which exact blockchain network (there may be more networks
accessible through a given gateway), and (iii) the blockchain-internal smart con-
tract address or identifier.

In the following, we list example SCL addresses for a set of the supported
blockchains that are accessed using the https scheme via a hypothetical gateway
hosted at mygateway.com:

* Ethereum:
https://mygateway.com?blockchain=ethereum&blockchain-id=eth-mainnet

&address=0xa0b73e1ff0b80914ab6fe0444e65848c4c34450b
* Bitcoin:
https://mygateway.com?blockchain=bitcoin&blockchain-id=btc-mainnet

&address=1Mbk53DzVKCz6MHiBd8ZHkPhsZETo7PtZR
* Hyperledger Fabric:
https://mygateway.com?blockchain=fabric&blockchain-id=part-vendors

&address=channel1%2Fchaincode1%2Fsmartcontract1
* EOSIO:
https://mygateway.com?blockchain=eos&blockchain-id=eos-mainnet

&address=myfancyacc05

4 Smart Contract Description Language (SCDL)

Looking at the dashed annotations in Figure 1, we can identify the typical roles
of the service-oriented architecture (SOA): a provider, a consumer and a registry
[11]. We assume that:

– The consumer is represented either by a blockchain-internal entity (a smart
contract) or a blockchain-external entity (a software application) – both of
them interested in reusing a given target smart contract, e.g., to inherit
application logic or to integrate blockchain capabilities into enterprise appli-
cations. In order to do so, it is crucial that developers be able to find suitable
smart contract descriptions that tell them all they need to know in order to
invoke the contract from the inside/outside.

– The provider is represented by the operator of the blockchain, who is in-
terested in opening its smart contracts to external entities. The practice is
commonly known as Blockchain-as-a-Service (BCaaS [12]) and is pushed by
vendors like Amazon (https://aws.amazon.com/managed-blockchain), Up-
vest (https://upvest.co) or Kaleido (https://kaleido.io). In order to allow
external consumers to connect to a hosted blockchain, the provider pub-
lishes suitable descriptors and a gateway.

https://aws.amazon.com/managed-blockchain
https://upvest.co
https://kaleido.io
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Smart 
contract

Contract version

Function EventNameScope

Description

Parameter
Keeps 
order

Side-effect

URL latest version

Author

Creation date

Update date

SCL address

Blockchain-internal address

Blockchain type

Blockchain version

Metadata link

Code hash

0..n

1..n

0..n 0..n
0..n

0..1

produces
consumes

produces

0..1 0..1

0..1

0..1

0..n

generates

Index

0..1

Keeps 
order

Life cyle

dispatcher
0..1

Type
Only for event 
parameters

SCDL version

0..1

State

Fig. 2. Metamodel of Smart Contract Description Language (SCDL), version 1.0.

– The registry hosts smart contract descriptors and provides consumers with
search and retrieval capabilities. The design of this registry is out of the
scope of this paper and part of our future work.

The goal of the Smart Contract Description Language (SCDL) is now to en-
able the abstract, blockchain-independent description of the external interfaces of
smart contracts and to cater to both internal and external consumers. The lan-
guage should further provide for the extensibility to allow developers to include
blockchain-, contract- or application-specific metadata if needed.

4.1 Language metamodel

Given these requirements and the results of Section 2, which analyzed state-
of-the-art support for smart contracts, Figure 2 illustrates the metamodel of
SCDL; furthermore, the left half of Table 2 explains each of the entities in the
metamodel. According to the metamodel, a smart contract can be seen as a
blockchain- or web-accessible entity that is characterized by a set of descriptive
metadata elements, a set of functions and a set of events.

Typical metadata are generic attributes like contract name, description, au-
thor and version, but also access-oriented attributes like the SCL address for
external consumers and the blockchain type, version and internal address for
internal consumers. Where available (e.g., for Ethereum smart contracts) pub-
licly accessible metadata can be linked and a hash of the contract’s code can
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be added to allow developers to check if a descriptor is up to date. Functions,
too, have a name and a description and are characterized by the set of input and
return parameters they consume/produce; parameter lists are ordered (the order
is needed for some platforms to be able to properly invoke functions). Functions
may further produce events, e.g., for the implementation of asynchronous com-
munication with consumers, have a scope (e.g., public vs. private), produce or
not side-effects (change or not the state), and specify a dispatcher function for
those platforms where functions are not invoked directly (e.g., Hyperledger Fab-
ric). Events have a name, a description and an ordered list of output parameters.
Parameters have a name, an abstract data type (external consumers) that allows
the derivation of a blockchain-specific, native data type (internal consumers) and
may be indexed to enable consumers to query events on the blockchain.

The metamodel does not explicitly provide any extensibility points. It rep-
resents the minimum set of properties that allow a provider to describe any of
the smart contracts studied in Section 2. For Bitcoin scripts, we can interpret
clauses as functions and describe how to trigger them by means of the param-
eters needed to make them true. If additional properties are needed, these can
simply be added as properties to the composite objects of the language, i.e.,
smart contract, function, event, parameter. For instance, if a provider wants to
explicitly mention the programming language of a given smart contract, this
could be achieved by adding a language property to the smart contract object.

For simplicity, in this paper we assume that there exists a suitable agree-
ment between the provider and the consumer regarding the costs the provider
may incur when executing smart contracts on behalf of the external consumer
(internal consumers are charged directly by the blockchain platform).

4.2 SCDL JSON syntax

We propose to equip the metamodel with a concrete syntax based on JSON,
which is supported by multiple blockchain platforms (e.g., Ethereum, Hyper-
ledger Fabric) and, hence, maintains consistency with existing conventions.

The translation of the metamodel to a concrete syntax follows few simple
rules: entities with associated properties produce JSON objects with properties;
composition relationships are translated to JSON arrays; the order of parameters
of functions or events is expressed by their order inside their respective arrays;
abstract data types of parameters are expressed using JSON Schema (https:
//json-schema.org)3. The right half of Table 2 defines each individual language
construct in detail and equips it with a respective domain of possible values. The
general structure of a SCDL descriptor is organized as shown in Figure 3.

Next to JSON, also formats like XML, YAML or similar are compatible
with the metamodel. We propose the use of JSON Schema to express abstract
data types in order to enable external consumers (e.g., a business process engine
connected to a blockchain via a gateway) to understand basic data types without
the need for blockchain-specific knowledge.

3 For mappings see https://github.com/floriandanielit/scdl#data-encoding.

https://json-schema.org
https://json-schema.org
https://github.com/floriandanielit/scdl#data-encoding
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Table 2. SCDL 1.0 constructs with concrete syntax and domains of values. Mandatory
elements are the minimum information needed to uniquely characterize smart contracts.

Construct Description Syntax element Type of $value
Smart contract

✘ SCDL version Version of SCDL used; in this paper 
the version is 1.0 scdl_version : $value String

✘ Name Expressive name of contract name : $value String
✘ Contract version Version of smart contract version : $value String
☐ URL latest version Optional URL to latest descriptor latest_URL: $value URL
☐ Description Free text description of contract description : $value String
✘ Author Developer name of contract author : $value String
✘ Creation date Date the descriptor was created created_on : $value Date
☐ Update date Date the descriptor was updated updated_on : $value Date
☐ Lifecycle Lifecycle state of contract lifecycle : $value "ready" | “destroyed"

☐ SCL address SCL address of possible smart 
contract gateway scl : $value SCL address, see 

Section 3

✘ Blockchain type Name of the blockchain platform blockchain_type : 
$value

"ethereum" | "bitcoin" 
| "fabric" | "neo"

✘ Blockchain version Version of the blockchain platform 
the contract runs on

blockchain_version : 
$value String

✘
Blockchain-internal 
address

Blockchain-internal address of smart 
contract, e.g., Ethereum accout

internal_address : 
$value String

☐ Metadata link Link to external metadata of 
contract, if available metadata : $value URL

☐ Code hash SHA256 hash of contract code hash : $value String

✘ State Tells if the contract maintains internal 
state of not is_stateful : $value Boolean

✘ Functions List of functions provided by contract
functions : 
[Function, 
Function,...]

Array of Function

☐ Events List of events generated by contract events : [Event, 
Event,...] Array of Event

Function

✘ Name Contract-wide unique name of  
function name : $value String

☐ Description Free text description of function description : $value String

✘ Scope Visibility of function scope : $value "public" | "private" | 
"internal" | "external"

✘ Side-effect Tells whether the function as side-
effects on state or not

has_side_effects : 
$value Boolean

☐ Dispatcher Name of dispatcher function to use 
for function invocation dispatcher : $value String

✘ Input parameters List of input parameters inputs : [Parameter, 
Parameter,...] Array of Parameter

✘ Output parameters List of output parameters outputs : [Parameter, 
Parameter,...] Array of Parameter

☐ Events generated List of names of events generated by 
function

events : [String, 
String,...] Array of String

Event
✘ Name Contract-wide unique event name name : $value String
☐ Description Free text description of event description : $value String

✘ Output parameters List of output parameters outputs : [Parameter, 
Parameter,...] Array of Parameter

Parameter
✘ Name Unique parameter name name : $value String

✘ Type Abstract, blockchain-indepdendent 
data type of parameter type : $value String

☐ Index Tells if parameter is indexed and 
therefore searchable is_indexed : $value Boolean

✘  Mandatory element      ☐  Optional element

1
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{"scdl_version" : "1.0.0", // generic smart contract properties
"name" : "TokenConversion", ...
"functions" : [
{ "name" : "convert", ... // function properties
"inputs" : [
{ "name" : "amount",
"type" : "number"

}, ... // list of parameters
],
"outputs" : [...], // list of parameters
"events" : [...] // list of parameters

}, ... // list of functions
],
"events" : [
{ "name" : "...", ... // event properties
"outputs" : [...], // list of parameters

}, ... // list of events
]
}

Fig. 3. General structure of SCDL descriptor

4.3 Example: ZilliqaToken contract

As an example, let’s consider the ZilliqaToken contract deployed on Ethereum
by the Zilliqa Team; the deployed contract and its code can be inspected at
https://bit.ly/2GBajXC. The contract follows the ERC20 standard (https://
theethereum.wiki/w/index.php/ERC20 Token Standard) for the implementation
of the ZIL token in Ethereum. The contract allows its users to check their token
balance, transfer tokens among accounts, approve others to spend tokens, etc.

Figure 4 provides an excerpt from a possible SCDL descriptor of the contract
(core metadata, one function and one correlated event). Next to the name and
a short description, the descriptor provides the external consumer with the SCL

address of the contract and the internal consumers with the internal address.
As we chose the latest version of the contract, there is no link to any newer version
of the contract, and the source code is linked using the metadata link. The
contract is stateful, as it tracks token balances. The function transfer allows
the user to transfer a given value to a receiver to. The function can be invoked
directly using its name and generates the event Transfer with parameters from,
to, value upon completion of the transfer. The parameters from and to are
indexed and can thus be used for fast search of token transfers among accounts.
The description of the complete contract is linked in the caption of Figure 4.

5 Related Work

The problem of describing the external interface of software components is
not new and has gained particular attention with the advent of the service-
oriented architecture. Two core service models have emerged: SOAP web ser-
vices [11] and RESTful APIs [7], the former equipped with description lan-

https://bit.ly/2GBajXC
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
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   { "scdl_version" : "1.0",
"name" : "ZilliqaToken",
"version" : "^0.4.18",
"latest_url" : null,
"author" : "0xBfE4aA5c37D223EEBe0A1F7111556Ae49bE0dcD2",
"description" : "Contract token implementation following the ERC20 standard, the new created

      token is called ZIL",
"created_on" : "Jan-12-2018 09:44:42 AM +UTC",
"updated_on" : "Jan-12-2018 09:44:42 AM +UTC",
“scl" : "https://mygateway.com?blockchain=ethereum&blockchain-id=eth-

              mainnet&address=0x05f4a42e251f2d52b8ed15E9FEdAacFcEF1FAD27",
"internal_address" : "0x05f4a42e251f2d52b8ed15E9FEdAacFcEF1FAD27",
"blockchain_type" : "ethereum",
"blockchain_version" : "v0.4.18+commit.9cf6e910",
"metadata" : "https://etherscan.io/address/0x05f4a42e251f2d52b8ed15e9fedaacfcef1fad27#code",
"hash" : "b311edaec5a164050cede3219bf28cc6ce4c0ca43b8bf34d6fd309fb60c4d1d8  -",
"is_stateful" : true,
"lifecycle" : "ready",
"functions" : [

{ "name" : "transfer",
  "description" : "* @dev transfer

            token for a specified address.
            @param _to The address to transfer
            to. @param _value Amount to be transf."

  "scope" : "public",
  "has_side_effects" : true,
  "inputs" : [

{ "name" : "_to",
"type" : "string"
"pattern" : "^0x[a-fA-F0-9]{40}$"

{ "name" : "_value",
"type" : "number"
"minimum" : "0"
"maximum" : "2^256-1"

}
  ],
  "outputs" : [

{ "name" : null,
"type" : "boolean"

}
  ],
  "events" : ["Transfer"],
  "dispatcher" : null
}, ...

],

"events" : [
{ "name" : "Transfer",

"description" : "Triggered when
               tokens are transferred",

"outputs" : [
{ "name" : "from",

"type" : "string",
     "pattern" : 

                           "^0x[a-fA-F0-9]{40}$"
"is_indexed" : true

},
{ "name" : "to",

"type" : “string”,
     "pattern" : 

                           "^0x[a-fA-F0-9]{40}$"
"is_indexed" : true

},
{ "name" : "value",
     "type" : "number"
     "minimum" : "0"
     "maximum" : "2^256-1"

"is_indexed" : false
}

]
}, ...

]
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Fig. 4. JSON-based SCDL descriptor of ZilliqaToken smart contract with hypothetical
SCL addresss. For brevity, we report here only one function and one connected event;
the full descriptor can be inspected online via https://bit.ly/2LRy9Tb.

guages like WSDL (https://www.w3.org/TR/2007/REC-wsdl20-20070626) and
WSDL-S (https://www.w3.org/Submission/WSDL-S), the latter with languages
like WADL (https://www.w3.org/Submission/wadl) and Swagger / OpenAPI
(https://swagger.io). WADL and Swagger / OpenAPI are oriented toward state-
less resources and are, hence, out of scope. The metamodels of WSDL and
WSDL-S are generic, that of SCDL is smart contract specific (e.g., it expresses
relationships between functions and events and identifies indexed parameters).

The first approach to describing smart contracts in a blockchain-familiar
fashion (JSON) is introduced in [8], where we suggested a SOA-based approach
that allows one to uniformly describe Ethereum smart contracts and to store
the resulting descriptions in a specialized registry that facilitates reuse. Com-
pared to that work, the SCDL we propose here goes beyond Ethereum to a
wider set of permissioned and permissionless blockchains. Furthermore, we also
target developers of external applications by differentiating between internal,

https://bit.ly/2LRy9Tb
https://www.w3.org/TR/2007/REC-wsdl20-20070626
https://www.w3.org/Submission/WSDL-S
https://www.w3.org/Submission/wadl
https://swagger.io
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blockchain-specific smart contract addresses, and external, uniform addresses,
i.e., SCLs, which can be used over the Internet.

In previous work [6], we instead focused on the process-based composition of
heterogeneous smart contracts. The approach uses an extension of BPMN that
allows invocations to permissioned and permissionless smart contract functions
from standard business processes that can be executed by regular process en-
gines. To allow for technology-agnostic models, the process engine utilizes an
extensible middleware component called Blockchain Access Layer (BAL), which
translates the calls it receives from external applications, e.g., the process engine,
into blockchain-specific invocations. To identify the smart contract function that
needs to be invoked, the BAL used a non URL-compatible URI scheme.

The SCL addressing scheme presented in this paper allows external applica-
tions to address heterogeneous smart contract functions across the Internet by
utilizing the concept of a gateway that provides access to one or more blockchain
platforms. This decouples the external consumers from the middleware that fa-
cilitates the communication with blockchain platforms.

6 Discussion and Outlook

This paper advances the state of the art in blockchain technology with two pro-
posals of abstraction, i.e., the Smart Contract Locator (SCL) for cross-blockchain
addressing of smart contracts and the Smart Contract Description Language
(SCDL) for the abstract description of smart contracts. We consider both as
founding ingredients for the development of a service-oriented architecture that
is based on smart contracts and enables a service-like integration of blockchains
into generic software applications. Commercial Blockchain-as-a-Service providers
like Amazon, Upvest and Kaleido are evidence that the market is ready, yet this
paper claims that suitable abstractions and middleware support are still missing.
In this respect, SCL and SCDL do not just want to advance that state of the
art but they also want to stimulate the discussion.

The proposal of SCL is compliant with standard URLs, which makes it na-
tively ready for the Internet. The examples in this paper use a scheme binding of
"http" or "https", but nothing prohibits the use of SMTP or any other trans-
port protocol. Similarly, SCDL is proposed with a JSON binding for serialization.
This choice was driven by the observation that most blockchain platforms an-
alyzed already make large use of JSON, e.g., for the invocation of functions,
and hence aims to keep consistency. However, given the metadmodel of SCDL,
alternative bindings can be defined for XML, YAML, WSDL or others.

The next step of our work will concentrate on the specification of a smart con-
tract invocation protocol to rule the communication between external consumers
and gateways, as well as on the implementation of a reference architecture for
gateways able to provide access to different blockchain technologies. In terms
of SCDL, the next version of the language will provide for the description of
non-functional aspects like service-level agreements and payments – one feature
where smart contracts excel compared to SOAP/REST services. SCDL will also
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be equipped with a suitable, open registry able to host descriptors and to provide
for search and retrieval of smart contracts.

We intend to use GitHub to evolve the proposals of SCL (https://github.
com/ghareeb-falazi/scl) and SCDL (https://github.com/floriandanielit/scdl) with
help from the community.
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