
Chapter 1
Assisted Mashup Development:
On the Discovery and Recommendation of
Mashup Composition Knowledge

Carlos Rodrı́guez, Soudip Roy Chowdhury, Florian Daniel, Hamid R. Motahari
Nezhad and Fabio Casati

Abstract Over the past few years, mashup development has been made more ac-
cessible with tools such as Yahoo! Pipes that help in making the development task
simpler through simplifying technologies. However, mashup development is still a
difficult task that requires knowledge about the functionality of web APIs, param-
eter settings, data mappings, among other development efforts. In this work, we
aim at assisting users in the mashup process by recommending development knowl-
edge that comes in the form of reusable composition knowledge. This composition
knowledge is harvested from a repository of existing mashup models by mining a
set of composition patterns, which are then used for interactively providing com-
position recommendations while developing the mashup. When the user accepts a
recommendation, it is automatically woven into the partial mashup model by apply-
ing modeling actions as if they were performed by the user. In order to demonstrate
our approach we have implemented Baya, a Firefox plugin for Yahoo! Pipes that
shows that it is indeed possible to harvest useful composition patterns from existing
mashups, and that we are able to provide complex recommendations that can be
automatically woven inside Yahoo! Pipes’ web-based mashup editor.

1.1 Introduction

Mashup tools, such as Yahoo! Pipes (http://pipes.yahoo.com/pipes/)
or JackBe Presto Wires (http://www.jackbe.com), generally promise easy
development tools and lightweight runtime environments, both typically running
inside the client browser. By now, mashup tools undoubtedly simplified some com-
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plex composition tasks, such as the integration of web services or user interfaces.
Yet, despite these advances in simplifying technology, mashup development is still
a complex task that can only be managed by skilled developers.

People without the necessary programming experience may not be able to prof-
itably use mashup tools like Pipes — to their dissatisfaction. For instance, we think
of tech-savvy people, who like exploring software features, authoring and sharing
own content on the Web, that would like to mash up other contents in new ways,
but that don’t have programming skills. They might lack appropriate awareness of
which composable elements a tool provides, of their specific functionality, of how
to combine them, of how to propagate data, and so on. In short, these are people
that do not have software development knowledge. The problem is analogous in the
context of web service composition (e.g., with BPEL) or business process model-
ing (e.g., with BPMN), where modelers are typically more skilled, but still may not
know all the features or typical modeling patterns of their tools.

What people (also programmers) typically do when they don’t know how to solve
a tricky modeling problem is searching for help, e.g., by asking more skilled friends
or by querying the Web for solutions to analogous problems. In this latter case, ex-
amples of ready mashup models are one of the most effective pieces of information
– provided that suitable examples can be found, i.e., examples that have an analogy
with the modeling situation faced by the modeler. Yet, searching for help does not
always lead to success, and retrieved information is only seldom immediately usable
as is, since the retrieved pieces of information are not contextual, i.e., immediately
applicable to the given modeling problem.

Fig. 1.1 A typical pattern in Yahoo! Pipes

For instance, Figure 1.1 illustrates a Yahoo! Pipes model that encodes how to
plot news items on a map. Besides showing how to connect components and fill pa-
rameters, the key lesson that can be learned from this pipe is that plotting news onto
a map requires first enriching the news feed with geo-coordinates, then fetching the



1 Assisted Mashup Development 3

actual news items, and only then handing the items over to the map. Understanding
this logic is neither trivial nor intuitive.

Driven by a user study on how end users imagine assistance during mashup devel-
opment [4], we aim to automatically offer them help pro-actively and interactively.
Specifically, we are working toward the interactive, contextual recommendation of
reusable composition knowledge, in order to assist the modeler in each step of his
development task, e.g., by suggesting a candidate next component or a whole chain
of tasks. The knowledge we want to recommend is re-usable composition patterns,
i.e., model fragments that bear knowledge about how to compose mashups, such
as the pattern in Figure 1.1. Such knowledge may come from a variety of possible
sources. In this work, we specifically focus on community composition knowledge
and mine recurrent model fragments from a repository of given mashup models.

The vision is that of enabling the development of assisted, web-based mashup en-
vironments that deliver composition knowledge much like Google’s Instant feature
delivers search results already while still typing keywords into the search field.

In this chapter, we approach two core challenges of this vision, i.e., the discovery
of reusable composition knowledge from a repository of ready mashup models and
the reuse of such knowledge inside mashup tools, a feature that we call weaving.
Together with the ability to search and retrieve composition patterns contextually
when modeling a new mashup, a problem we approached in [10] and that we sum-
marize in this chapter, these two features represent the key enablers of the vision of
assisted development. We specifically provide the following contributions:

• We describe a canonical mashup model that is able to represent in a single mod-
eling formalism a variety of data flow mashup languages. The goal is to mine
composition knowledge from multiple source languages by implementing the
necessary algorithms only once.

• Based on our canonical mashup model, we define a set of mashup pattern types
that resemble the modeling actions of typical mashup environments.

• We describe an architecture of our knowledge recommender that can be used to
equip any mashup environment with interactive assistance for its developers.

• We develop a set of data mining algorithms that discover composition knowledge
in the form of reusable mashup patterns from a repository of mashup models.

• We present our pattern recommendation and pattern weaving algorithms. The
former aims at recommending composition patterns based on the user actions on
the design canvas. The later aims at automatically appying patterns to mashup
models, allowing the developer to progress in his development task.

In the next section, we start by introducing the canonical mashup model, which
will help us to formulate our problem statement, define mashup pattern types and
describe our pattern mining algorithms. Section 1.3 is where we describe the types
of mashup patterns we are interested in and the architecture of our recommendation
platform. In Sections 1.4, 1.5 and 1.6 we, respectively, describe in details the mining,
recommendation, and weaving algorithms. Section 1.7 presents the details of the
implementation of our approach. In Section 1.8 we overview related work. Then,
with Section 1.9, we conclude the chapter.
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1.2 Preliminaries and Problem

The development of a data mining algorithm strongly depends on the data to be
mined. The data in our case are the mashup models. Since in our work we do not
only aim at the reuse of knowledge but also at the reuse of our algorithms across
different platforms, we strive for the development of algorithms that are able to ac-
commodate different mashup models in input. Next, we therefore describe a canon-
ical mashup model that allows us to concisely express multiple data mashup mod-
els and to implement mining algorithms that intrinsically support multiple mashup
platforms. The canonical model is not meant to be executed; it rather serves as de-
scription format.

As a first step toward generic modeling environments, in this chapter we focus
on data flow based mashup models. Although relatively simple, they are the basis
of a significant number of mashup environments, and the approach can easily be
extended toward other mashup environments.

1.2.1 A Canonical Mashup Model

Let CT be a set of component types of the form ctype = 〈type, IP, IN,OP,OUT, is
embedding〉, where type identifies the type of component (e.g., RSS feed, filter, or

similar), IP is the set of input ports of the component type (for the specification of
data flows), IN is the set of input parameters of the component type, OP is the set
of output ports, OUT is the set of output attributes1, and is embedding ∈ {yes,no}
tells whether the component type allows the embedding of components or not (e.g.,
to model a loop). We distinguish three types of components:

• Source components fetch data from the web (e.g., from an RSS feed) or the local
machine (e.g., from a spreadsheet), or they collect user inputs at runtime. They
don’t have input ports, i.e., IP = /0.

• Data processing components consume data in input and produce processed data
in output. Therefore: IP, OP 6= /0. Filter components, operators, and data trans-
formers are examples of data processing components.

• Sink components publish the output of a mashup, e.g., by printing it onto the
screen (e.g., a pie chart) or providing an API toward it, such as an RSS or REST-
ful resource. Sinks don’t have outputs, i.e., OP = /0.

Given a set of component types, we are able to instantiate components in a
modeling canvas and to compose mashups. We express the respective canoni-
cal mashup model as a tuple m = 〈name, id,src,C,GP,DF,RES〉, where name is
the name of the mashup in the canonical representation, id a unique identifier,
src ∈ {“Pipes”,“Wires”,“myCocktail”, ...} keeps track of the source platform of

1 We use the term attribute to denote data attributes produced as output by a component or flowing
through a data flow connector and the term parameter to denote input parameters of a component.
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the mashup, C is the set of components, GP is a set of global parameters, DF is a
set of data flow connectors propagating data among components, and RES is a set
of result parameters of the mashup. Specifically:

• GP = {gpi|gpi = 〈namei,valuei〉} is a set of global parameters that can be
consumed by components, namei is the name of a given parameter, valuei ∈
(ST R∪NUM ∪{null}) is its value, with ST R and NUM representing the sets
of possible string or numeric values, respectively. The use of global parameters
inside data flow languages is not very common, yet tools like Presto Wires or
myCocktail (http://www.ict-romulus.eu/web/mycocktail) sup-
port the design-time definition of globally reusable variables.

• DF = {d f j|d f j = 〈srccid j,srcop j, tgtcid j, tgtip j〉} is a set of data flow connec-
tors that, each, assign the output port srcop j of a source component with iden-
tifier srccid j to an input port tgtip j of a target component identified by tgtcid j,
such that srccid 6= tgtcid. Source components don’t have connectors in input;
sink components don’t have connectors in output.

• C = {ck|ck = 〈namek, idk, typek, IPk, INk,DMk,VAk,
OPk,OUTk,Ek〉} is the set of components, such that ck = instanceO f (
ctype)2, ctype ∈ CT and namek is the name of the component in the mashup
(e.g., its label), idk uniquely identifies the component, typek = ctype.type3, IPk =
ctype.IP, INk = ctype.IN, OPk = ctype.OP, OUTk = ctype.OUT , and:

– DMk ⊆ INk× (
⋃

ip∈IPk
ip.source.OUT ) is the set of data mappings that map

attributes of the input data flows of ck to input parameters of ck.
– VAk ⊆ INk× (ST R∪NUM∪GP) is the set of value assignments for the in-

put parameters of ck; values are either filled manually or taken from global
parameters.

– Ek = {cidkl} is the set of identifiers of the embedded components. If the com-
ponent does not support embedded components, Ek = /0.

• RES⊆
⋃

c∈C c.OUT is the set of mashup outputs computed by the mashup.

Without loss of generality, throughout this chapter we exemplify our ideas and
solutions in the context of Yahoo! Pipes, which is well known and comes with a large
body of readily available mashup models that we can analyze. Pipes is very similar
to our canonical mashup model, with two key differences: it does not have global
parameters, and the outputs of the mashup are specified by using a dedicated Pipe
Output component (see Figure 1.1). Hence, GP,RES = /0 and a pipe corresponds to
a restricted canonical mashup of the form m = 〈name, id,“Pipes”,C, /0,DF, /0〉 with
the attributes as specified above. In general, we refer to the generic canonical model;
we explicitly state where instead we use the restricted Pipes model.

2 To keep models and algorithms simple, we opt for a self-describing instance model for compo-
nents, which presents both type and instance properties.
3 We use a dot notation to refer to sub-elements of structured elements; ctype.type therefore refers
to the type attribute of the component type ctype.
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1.2.2 Problem Statement

Given the above canonical mashup model, the problem we want to address in this
chapter is understanding (i) which kind of knowledge can be extracted from the
canonical mashup model so as to automatically assist users in developing their
mashups, (ii) what algorithms we need to develop in order to be able to discover
such knowledge from existing mashup models, (iii) how to interactively recom-
mend discovered patterns inside mashup tools in order to guide users with the next
modeling step/s and (iv) how to automatically apply (weave) the selected recom-
mendation inside the current mashup design.

1.3 Approach

The current trend in modeling environments in general, and in mashup tools in par-
ticular, is toward intuitive, web-based solutions. The key principles of our work are
therefore to conceive solutions that resemble the modeling paradigm of graphical
modeling tools, to develop them so that they can run inside the client browser, and
to specifically tune their performance so that they do not annoy the developer while
modeling. These principles affect the nature of the knowledge we are interested in
and the architecture and implementation of the respective recommendation infras-
tructure.

1.3.1 Composition Knowledge Patterns

Starting from the canonical mashup model, we define composition knowledge as
reusable composition patterns for mashups of type m, i.e., model fragments that
provide insight into how to solve specific modeling problems, such as the one il-
lustrated in Figure 1.1. In general, we are in the presence of a set of composition
pattern types PT , where each pattern type is of the form ptype = 〈C,GP,DF,RES〉,
where C,GP,DF,RES are as defined for m.

The size of a pattern may vary from a single component with a value assignment
for one input parameter to an entire, executable mashup. The most basic patterns
are those that represent a co-occurrence of two elements out of C,GP,DF or RES.
For instance, two components that recur often together form a basic pattern; given
one of the components, we are able to recommend the other component. Similarly,
an input parameter plus its value form a basic pattern, given the parameter, we can
recommend a possible value for it. As such, the most basic patterns are similar to
association rules, which, given one piece of information, are able to suggest another
piece of information.

Aiming, however, to help a developer refine his mashup model step by step with
as less own effort as possible, we are able to identify a set of pattern types that al-
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low the developer to obtain more practical and meaningful composition knowledge.
Such knowledge is represented by sensible combinations of basic patterns, i.e., by
composite patterns.

Considering the typical modeling steps performed by a developer (e.g., filling
input fields, connecting components, copying/pasting model fragments), we specif-
ically identify the following set PT of pattern types:

Parameter value pattern. The parameter value pattern represents a set of recurrent
value assignments VA for the input fields IN of a component c:

ptypepar = 〈{c},GP, /0, /0〉;
c = 〈name,0, type, /0, IN, /0, /0,VA, /0, /0〉4;
GP 6= /0 if VA also assigns global parameters to IN;
GP = /0 if VA assigns only strings or numeric constants.
This pattern helps filling input fields of a component that require explicit user

input.

Connector pattern. The connector pattern represents a recurrent connector d fxy,
given two components cx and cy, along with the respective data mapping DMy of
the output attributes OUTx to the input parameters INy:

ptypecon = 〈{cx,cy}, /0,{d fxy}, /0〉;
cx = 〈namex,0, typex, /0, /0, /0, /0,{opx},OUTx, /0〉;
cy = 〈namey,1, typey,{ipy}, INy,DMy, /0, /0, /0, /0〉.
This pattern helps connecting a newly placed component to the partial mashup

model in the canvas.

Connector co-occurrence pattern. The connector co-occurrence pattern captures
which connectors d fxy and d fyz occur together, also including their data mappings:

ptypecoo = 〈{cx,cy,cz}, /0,{d fxy,d fyz}, /0〉;
cx = 〈namex,0, typex, /0, /0, /0, /0,{opx},OUTx, /0〉;
cy = 〈namey,1, typey,{ipy}, INy,DMy, /0,{opy},
OUTy, /0〉
cz = 〈namez,2, typez,{ipz}, INz,DMz, /0, /0, /0, /0〉.
This pattern helps connecting components. It is particularly valuable in those

cases where people, rather than developing their mashup model in an incremen-
tal but connected fashion, proceed by first selecting the desired functionalities (the
components) and only then by connecting them.

Component co-occurrence pattern. Similarly, the component co-occurrence pattern
captures couples of components that occur together. It comes with two components
cx and cy as well as with their connector, global parameters, parameter values, and
cy’s data mapping logic:

4 The identifier c.id = 0 does not represent recurrent information. Identifiers in patterns rather rep-
resent internal, system-generated information that is necessary to correctly maintain the structure
of patterns. When mining patterns, the actual identifiers are lost; when weaving patterns, they need
to be re-generated in the target mashup model.
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ptypecom = 〈{cx,cy},GP,{d fxy}, /0〉;
cx = 〈namex,0, typex, /0, INx,{opx},OUTx,VAx, /0, /0〉;
cy = 〈namey,1, typey,{ipy}, INy,DMy,VAy, /0, /0, /0〉.
This pattern helps developing a mashup model incrementally, producing at each

step a connected mashup model.

Component embedding pattern. The component embedding pattern captures which
component cz is typically embedded into a component cy preceded by a component
cx. The pattern has three components, in that both the embedded and the embedding
component have access to the outputs of the preceding component. How these out-
puts are jointly used is valuable information. The pattern, hence, contains the three
components with their connectors, data mappings, global parameters, and parameter
values:

ptypeemb = 〈{cx,cy,cz},GP,{d fxy,d fxz,d fzy}, /0〉;
cx = 〈namex,0, typex, /0, /0,{opx},OUTx, /0, /0, /0〉;
cy = 〈namey,1, typey,{ipy}, INy,DMy,VAy, /0, /0, /0〉;
cz = 〈namez,2, typez,{ipz}, INz,DMz,VAz,{opz},
OUTz, /0〉.
This pattern helps, for instance, modeling cycles, a task that is usually not trivial

to non-experts.

Multi-component pattern. The multi-component pattern represents recurrent model
fragments that are generically composed of multiple components. It represents more
complex patterns, such as the one in Figure 1.1, that are not yet captured by the
other pattern types alone. It allows us to obtain a full model fragment, given any of
its sub-elements, typically, a set of components or connectors:

ptypemul = 〈C,GP,DF,RES〉;
C = {ci|ci.id = i; i = 0,1,2, ...}.
Besides providing significant modeling support, this pattern helps understanding

domain knowledge and best practices as well as keeping agreed-upon modeling
conventions.

This list of pattern types is extensible, and what actually matters is the way we
specify and process them. However, this set of pattern types, at the same time, lever-
ages on the interactive modeling paradigm of the mashup tools (the patterns repre-
sent modeling actions that could also be performed by the developer) and provides
as much information as possible (we do not only tell simple associations of con-
structs, but also show how these are used together in terms of connectors, parameter
values, and data mappings).

Given a set of pattern types, an actual pattern can therefore be seen as an instance
of any of these types. We model a composition pattern as cp = instanceO f (ptype),
ptype ∈ PT , where cp = 〈type,src,C,GP,DF,RES,usage,date〉, type ∈ {“Par”,
“Con”,“Coo”,“Com”,“Emb”,“Mul”}, src ∈ {“Pipes”,“Wires”,“myCockail”, ...}
specifies the target platform of the pattern, C,GP,DF,RES,src are as defined for
the pattern’s ptype, usage counts how many times the pattern has been used (e.g.,
to compute rankings), and date is the creation date of the pattern.
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Fig. 1.2 Functional architecture of the composition knowledge discovery and recommendation
approach

1.3.2 Architecture

Figure 1.2 details the internals of our knowledge discovery and recommendation
prototype. We distinguish between client and server side, where the discovery logic
is located in the server and the recommendation and weaving logic resides in the
client. In the recommendation server, a model adapter imports the native mashup
models into the canonical format. The pattern miner then extracts reusable com-
position knowledge in the form of composition patterns, which is then handed to a
second model adapter to convert the canonical patterns into native patterns and load
them into a knowledge base (KB). This KB is structured to maximize the perfor-
mance of pattern retrieval at runtime.

In the client, we have the interactive modeling environment, in which the de-
veloper can visually compose components (in the modeling canvas) taken from the
component tool bar. It is here where patterns are queried for and delivered in re-
sponse to modeling actions performed by the modeler in the modeling canvas. In vi-
sual modeling environments, we typically have action ∈ {“select”,“drag”,“drop”,
“connect”, “delete”,“ f ill”,“map”, ...}, where the action is performed on a mod-
eling construct in the canvas; we call this construct the ob ject of the action. For
instance, we can drop a component onto the canvas, or we can select a parameter to
fill it with a value, we can connect a data flow with a target component, or we can
select a set of components and connectors. Upon each interaction, the action and its
ob ject are published on a browser-internal event bus, which forwards them to the
recommendation engine. Given a modeling action, the ob ject it has been applied
to, and the partial mashup model pm, the engine queries the client-side pattern KB
via the KB access API for recommendations (pattern representations). An object-
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action-recommendation mapping (OAR) tells the engine which types of recommen-
dations are to be retrieved for each modeling action on a given object (for example,
when selecting an input field, only recommending possible values makes sense).
The client-side KB is filled at startup by the KB loader, which loads the available
patterns into the client environment, decoupling the knowledge recommender from
the server side.

The list of patterns retrieved from the KB (either via regular queries or by apply-
ing dedicated similarity criteria) are then ranked by the engine and rendered in the
recommendation panel, which renders the recommendations to the developer for
inspection. Selecting a recommendation enacts the pattern weaver, which queries
the KB for the usage details of the pattern (data mappings and value assignments)
and generates a set of modeling instructions that emulate user interactions inside the
modeling canvas and thereby weave the pattern into the partial mashup model.

1.4 Discovering Patterns

The first step in the information flow described in the above architecture is the dis-
covery of mashup patterns from canonical mashup models. To this end, we look into
the details of each individual pattern and implement dedicated mining algorithms for
each of them, which allow us to fine-tune each mashup-specific characteristic (e.g.,
to treat threshold values for parameter value assignments and data mappings dif-
ferently). The pattern mining algorithms make use of standard statistics as well as
frequent itemset and subgraph mining algorithms [13].

1.4.1 Mining algorithms

For each of the pattern types identified in Section 1.3.1, we have implemented a re-
spective pattern mining algorithm, the details of which we provide in the following.

Parameter value pattern. In the case of the parameter value pattern, we are inter-
ested in finding suitable values for the input fields in a given component. Most of
the components in mashup compositions contain more than one parameter and more
often than not the values of these parameters are related to one another and there-
fore we need take into account the co-occurrence of parameter values. In order to
discover such co-occurrences, we map this problem to the well-known problem of
itemset mining [13]. Algorithm 1 outlines the approach for finding parameter value
patterns. Here, we first get all component instances from the mashups in the mashup
repository (line 2) and group them together by their type (line 5-6) and then perform
the parameter value pattern mining by component type (line 7). Finally, we construct
the actual set of patterns that consists in tuples 〈ct,VA〉, where ct represents a com-
ponent type and VA represents the value assignment for its parameters.
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Algorithm 1: mineParameterValues
Data: repository of mashup compositions M and minimun support (minsupppar) for the frequent itemset mining
Result: set of parameter value patterns 〈ct,VA〉.

1 Patterns = set();
2 C = set of component instances in M;
3 CT = array();
4 Patterns = set();
5 foreach type of component ct in C do
6 CT [ct] = cx.VA with cx ∈C such that cx.type = ct ; // get all the parameter value

assignments of component instances of type ct
7 FI = mineFrequentItemsets(CT [ct],minsupppar);
8 foreach VA ∈ FI do
9 Patterns = Patterns∪{〈ct,VA〉};

10 return Patterns;

Connector pattern. A connector pattern is composed of two components, the source
component cx and the target component cy, their data flow connector d fxy, and the
data mapping DMy of the target component. Given a repository of mashup models
M = {mi} and the minimum support levels for the data flow connectors and data
mappings, the pseudo-code in Algorithm 2 shows how we mine connector patterns.

We start the mining task by getting the list of all recurrent connectors in M (line
1). The respective function getRecurrentConnectors is explained in Algorithm 3; in
essence, it computes a recurrence distribution for all connectors and returns only
those that exceed the threshold minsuppd f . The function returns a set of connector
types without repetitions and without information about the instances that generated
them. Given this set, we construct a database of concrete instances of each connector
type (using the getConnectorInstances function in line 5 and described in Algorithm
4) and, for each connector type, derive a database of the data mappings for the con-
nectors’ target component cy (lines 7-9). We feed the so constructed database into
a standard mineFrequentItemsets function [13], in order to obtain a set of recurrent
data mappings for each connector type. Finally, for each identified data mapping
DMy, we construct a tuple 〈d fxy,DMy〉 (lines 11-12), which concisely represents the
connector pattern structure introduced in Section 1.3.1; the rest of the pattern comes
from the component definitions.

Connector co-occurrence pattern. The connector pattern introduced previously
is about how pairs of components are connected together. The connector co-
occurrence pattern goes a step further: it tells how connectors between different
pairs of components co-occur together in compositions and how data mappings
are defined for them. Algorithm 5 presents the logic for computing connector co-
occurrence patterns. The main difference with respect to Algorithm 2 is that, in-
stead of computing the frequency of individual dataflow connectors between pairs
of components, we compute frequent itemsets of dataflow connectors (lines 2-4).

Component co-occurrence pattern. The component co-occurrence pattern is an ex-
tension of the connector pattern; in addition to the connectors and data mappings,
it also contains the parameter value assignments of the two components involved in
the connector. As shown in Algorithm 6, the respective mining logic is similar to
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Algorithm 2: mineConnectors
Data: repository of mashup models M, minimum support of data flow connectors (minsuppd f ) and data

mappings (minsuppdm)
Result: set of connectors with their corresponding data mappings {〈d fxy,i,DMy,i〉}

1 Fd f = getRecurrentConnectors(M,minsuppd f );

2 DB = array(); // database of recurrent connector instances
3 Patterns = set(); // set of connector patterns

4 foreach d fxy ∈ Fd f do
5 DB[d fxy] = getConnectorInstances(M,d fxy);

// create database for frequent itemset mining
6 DBDMy = array():
7 foreach d f ixy ∈ DB[d fxy] do
8 cy = target component of d f ixy;
9 append(DBDMy, cy.DM);

10 FIdy = mineFrequentItemsets(DBDMy, minsuppdm);

// construct the connector patterns
11 foreach DMy ∈ FIdy do
12 Patterns = Patterns∪{〈d fxy,DMy〉};

13 return Patterns;

Algorithm 3: getRecurrentConnectors
Data: repository of mashup models M, minimum support of data flow connectors (minsuppd f )
Result: set of recurrent connectors Fd f

1 DBd f = array(); // database of data flow connector instances
2 foreach mi ∈M do
3 append(DBd f ,mi.DF) ; // fill with instances

4 Fd f = set(); // set of recurrent data flow connectors
5 foreach d fxy ∈ DBd f do
6 if computeSupport(d fxy,DBd f ) ≥ minsuppd f then
7 Fd f = Fd f ∪{d fxy};

8 return Fd f ;

Algorithm 4: getConnectorInstances
Data: repository of mashup models M, reference connector d fxy
Result: array of connector instances DBxy

1 DBxy = array(); // database of data flow connector instances

2 foreach mi ∈M do
3 append(DBxy],mi.DF ∩{d fxy}) ; // fill with instances of the reference

connector type

4 return DBxy;

the one of the connector pattern, with two major differences: in lines 6-17 we also
mine the recurrent parameter value assignments of cx and cy, and in lines 18-21 we
consider only those combinations of VAx, VAy and DMy that co-occur in mashup
instances for the given connector. Notice that, for the purpose of explaining this al-
gorithm, we perform a cartesian product of VAx,, VAy and DMy in line 22. Doing this
can be computational expensive if implemented as-is. In practice, the implementa-
tion of this algorithm is performed in such a way that we do not have to explore
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Algorithm 5: mineConnectorCooccurrences
Data: repository of mashup compositions M, minimun support for dataflow connectors (minsuppd f ) and data

mappings (minsuppdm)
Result: list of connector patterns with their corresponding data mappings 〈DFxy,DMy〉
// find the co-occurrence of dataflow connectors

1 DBd f = array();
2 foreach mi ∈M do
3 append(DBd f , mi.DF);

4 Fd f = mineFrequentItemsets(DBd f ,minsuppd f );

5 DBci = array();
6 foreach mi ∈M do
7 foreach DFxy ∈ Fd f do
8 if DFxy ∩mi.DF = DFxy then
9 foreach d f ixy ∈ DFxy do

10 append(DBci[DFxy], getConnectorInstances({mi},d f ixy);

// find data mappings for the frequent dataflow connectors obtained above
11 DBDMy = array();
12 foreach DFxy ∈ DBci do
13 foreach d f ixy ∈ DFxy do
14 cy = target component of d f ixy;
15 append(DBDMy, cy.DM);

16 FIdy = mineFrequentItemsets(DBDMy, minsuppdm);

// construct the connector patterns
17 Patterns = set();
18 foreach DMy ∈ FIdy do
19 Patterns = Patterns∪{〈DFxy,DMy〉};
20 return Patterns;

the whole search space. This comment also applies to the rest of the algorithms
presented in this section.

Component embedding pattern. Mashup composition tools typically allow for the
embedding of components inside other components. However, not all components
present this capability. A common example is the loop component: it takes as input
a set of data items and then loops over them executing the operations provided
by the embedded component (e.g., a filter component). Embedding one component
into another is not a trivial task, as there may be complex dataflow connectors and
data mappings between the outer and inner component as well as between the last
two and the component that proceeds the outer component in the composition flow.
Algorithm 7 shows the logic for mining component embedding patterns. First, we
get the instances of component embeddings from the mashup repository and then
we keep only those that have a support greater or equal to minsuppem (lines 2-10).
Using these frequent embeddings, we look for frequent dataflows that involve these
embeddings (lines 11 to 17). For these patterns, we are also interested in finding
data mapping and parameter value patterns and thus we proceed as in the previous
algorithms to mine them (lines 18-31). In the last part of the algorithm (lines 32-37),
we proceed with building the actual patterns with tuples 〈{cx,cy,cz},DF,DM,VA〉
that include information about the components involved in the pattern as well as the
dataflow connectors, data mappings and parameter value assignments.
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Algorithm 6: mineComponentCooccurrences
Data: repository of mashup models M, minimum support of data flow connectors (minsuppd f ), data mappings

(minsuppdm), parameter value assignments (minsuppva) and pattern co-occurrence (minsupppc).
Result: set of component co-occurrence patterns with their corresponding dataflow connectors, data mappings

and parameter values {〈d fxy,i,VAx,i,VAy,i,DMy,i〉}
1 Fd f = getRecurrentConnectors(M,minsuppd f );

2 DB = array(); // database of recurrent connector instances
3 Patterns = set(); // set of component co-occurrence patterns

4 foreach d fxy ∈ Fd f do
5 DB[d fxy] = getConnectorInstances(M,d fxy);

// create databases for frequent itemset mining
6 DBVAx = array();
7 DBVAy = array();
8 DBDMy = array();
9 foreach d f ixy in DB[d fxy] do

10 cx = source component of d f ixy;
11 cy = target component of d f ixy;
12 append(DBVAx, cx.VA);
13 append(DBVAy, cy.VA);
14 append(DBDMy, cy.DM);

15 FIvx = mineFrequentItemsets(DBVAx, minsupppar);
16 FIvy = mineFrequentItemsets(DBVAy, minsupppar);
17 FIdy = mineFrequentItemsets(DBDMy, minsuppdm);

// keep only those combinations of value assignments and data mappings
that occur together in mashup instances

18 Coo = set();
19 foreach 〈VAx,VAy,DMy〉 ∈ FIvx×FIvy×FIdy do
20 if computeSupport(〈VAx,VAy,DMy〉,DB[d fxy])≥ minsupppc then
21 Coo = Coo∪{〈VAx,VAy,DMy〉};

// construct the component co-occurrence patterns
22 foreach 〈VAx,VAy,DMy〉 ∈Coo do
23 Patterns = Patterns∪{〈d fxy,VAx,VAy,DMy〉};

24 return Patterns;

Multi-component pattern. The multi-component pattern represents recurrent model
fragments that are composed of multiple components. It represents more complex
patterns, which are not yet captured by the other pattern types alone. This pattern
helps understanding domain knowledge and best practices as well as keeping model-
ing conventions. Multi-component patterns consists in a combination of the patterns
we have introduced before. Algorithm 8 provides the details of the mining algo-
rithm. We start by obtaining the graph representation of the mashups in the repos-
itory and mining frequent sub-graphs out of them (lines 2-5). For the sub-graph
mining we can choose among the state of the art sub-graph mining algorithms [13].
Then, we get from the mashup repository the list of mashup fragments that match
the frequent sub-graphs mined in the previous step (lines 6-11). We do this, so that
next we can mine both the parameter value and data mapping patterns using again
standard itemset mining algorithms (lines 13-21). Finally, we build the actual multi-
component patterns by going through the mashup repository and keeping only those
combinations of patterns that co-occur in the mashup instances (lines 22-25).
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Algorithm 7: mineComponentEmbeddings
Data: repository of mashup compositions M, minimum supports for component embeddings (minsuppem), data

flows (minsuppd f ), data mappings (minsuppdm), parameter value (minsupppar) and pattern co-occurrence
(minsupppc)

Result: list of component embedding patterns with their corresponding components, dataflow connectors, data
mappings and parameter value assignments 〈{cx,cy,cz},DF,DM,VA〉

// get the list of component embeddings
1 DBem = array();
2 foreach mi ∈M do
3 foreach 〈cx,cy,cz〉 ∈ mi.C×mi.C do
4 if (cx preceeds cy) and (cy embeds cz) then
5 emxyz = 〈cx,cy,cz〉;
6 append(DBem,emxyz);

// find the frequent component embeddings
7 Fem = set();
8 foreach emxyz ∈ DBem do
9 if computeSupport(emxyz,DBem)≥ minsuppem then

10 append(Fem,emxyz);

// get dataflows involving the frequent component embeddings
11 DBd f = array();
12 Fd f = array();
13 foreach mi ∈M do
14 foreach emxyz ∈ Fem do
15 if emxyz ∈ mi then
16 append(DBd f [emxyz],〈mi.d fxy,mi.d fxz,mi.d fyz〉);

17 Fd f = mineFrequentItemsets(DBd f ,minsuppd f );

// get parameter value and data mapping instances and compute the
corresponding frequent itemsets

18 DBva = array(); DBdm = array();
19 foreach mi ∈M do
20 foreach 〈d fxy,d fxz,d fyz〉 ∈ Fd f do
21 if 〈d fxy,d fxz,d fyz〉 ∈ mi then
22 cx = component instance cx ∈ mi corresponding to d fxy;
23 cy = component instance cy ∈ mi corresponding to d fxy;
24 cz = component instance cz ∈ mi corresponding to d fyz;
25 VAx = cx.VA; DMx = cx.DM;
26 VAy = cy.VA; DMy = cy.DM;
27 VAz = cz.VA; DMz = cz.DM;
28 append(DBva,VAx ∪VAy ∪VAz);
29 append(DBdm,DMx ∪DMy ∪DMz);

30 Fva = mineFrequentItemsets(DBva,minsupppar);
31 Fdm = mineFrequentItemsets(DBdm,minsuppdm);

// construct the component embedding pattern
32 Patterns = set();
33 foreach 〈EM,DF,DM,VA〉 ∈ Fem×Fd f ×Fdm×Fva do
34 if computeSupport(〈EM,DF,DM,VA〉,M)≥ minsupppc then
35 cx,cy,cz = components corresponding to the dataflows d f ∈ DF ;
36 Patterns = Patterns∪{〈{cx,cy,cz},DF,DM,VA〉};

37 return Patterns;

1.5 Recommending Patterns

Recommending patterns is non-trivial, in that the size of the knowledge base may
be large, and the search for composition patterns may be complex; yet, recommen-
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Algorithm 8: mineMulticomponentPatterns
Data: repository of mashup compositions M and minimun support for multi-components (minsuppmc),

parameter value (minsupppar) and data mapping (minsuppdm) patterns.
Result: set of multi-component patterns 〈m f .C,m f .DF,VA,DM〉.

1 DBg = array() ; // database of graph representations of mashups
2 foreach mi ∈M do

// get a graph representation of mashup mi where the nodes represent
components and arcs represent dataflows; here, the arcs are labeled
with the output and input ports involved in the dataflow

3 gi = getGraphRepresentation(mi);
4 append(DBg,gi);

5 FG = mineFrequentSubraphs(DBg,minsuppmc);
6 DBmc = array();
7 foreach mi ∈M do
8 foreach f gi ∈ FG do
9 if getGraphRepresentation(mi) contains f gi then

// get the fragment m f from mashup instance mi that matches f gi;
notice that m f is represented as a canonical mashup model

10 m f = getSubgraphInstance(mi, f gi);
11 append(DBmc[ f gi],m f )

12 Patterns = set();
13 foreach MC ∈ DBmc do

// get parameter values and data mappings and compute the corresponding
frequent itemsets

14 DBVA = array();
15 DBDM = array();
16 foreach m f ∈MC do
17 foreach cx ∈ m f .C do
18 append(DBVA,cx.VA);
19 append(DBDM,cx.DM);

20 FIva = mineFrequentItemsets(DBVA,minsupppar);
21 FIdm = mineFrequentItemsets(DBDM,minsuppdm);

// construct the multi-component pattern
22 foreach 〈VA,DM〉 ∈ FIva×FIdm do
23 foreach m f ∈MC do
24 if 〈VA,DM〉 ∈ m f then
25 Patterns = Patterns∪{〈m f .C,m f .DF,VA,DM〉} ; // using m f, build the

patterns with its components (m f .C), dataflows (m f .DF),
value assignments (m f .VA) and data mappings (m f .DM)

26 return Patterns;

dations are to be delivered at high speed, without slowing down the modeler’s com-
position pace. Recommending patterns is platform-specific. The following explana-
tions therefore refer to the specific case of Pipes-like mashup models. In [10], we
show all the details of our approach; in the following we summarize its key aspects.

1.5.1 Pattern Knowledge Base

The core of the interactive recommender is the pattern KB. In order to enable the
incremental and fast recommendation of patterns, we decompose them into their
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constituent parts and focus only on those aspects that are necessary to convey the
meaning of a pattern. That is, we leverage on the observation that, in order to convey
the structure of a pattern, already its components and connectors enable the devel-
oper to choose in an informed fashion. Data mappings and value assignments, unless
explicitly requested by the developer, are then delivered only during the weaving
phase upon the selection of a specific pattern by the developer.

This strategy leads us to the KB illustrated in Figure 1.3, whose structure en-
ables the retrieval of each of the patterns introduced in Section 1.3.1 with a one-
shot query over a single table. For instance, let’s focus on the component co-
occurrence pattern: to retrieve its representation, it is enough to query the Compo-
nentCooccur entity for the SourceComponent and the TargetComponent attributes.
The query is assembled automatically upon interactions in the modeling canvas and
is of the form q = 〈ob ject,action, pm〉. Only weaving the pattern into the mashup
model requires querying ComponentCooccur ./ Connectors ./ DataMapping and
ComponentCooccur ./ ParameterValues.

1..N

DataMapping
ID
SourceAttribute
TargetParameter
Usage
Date

Connectors
ID
SourceComponent
TargetComponent
Usage
Date

0..1

ParameterValues
ID
Component
Parameter
Value
Usage
Date

MultiComponent
ID
C
DF
DF'
Usage
Date

ComponentCooccur
ID
SourceComponent
TargetComponent
Usage
Date

ConnectorCooccur
ID
FirstComponent
SecondComponent
ThirdComponent
Usage
Date

Embedding
ID
SourceComponent
EmbeddingComponent
EmbeddedComponent
Usage
Date

0..1

1..N

0..1

1..N

1..N

1..N
0..1

0..1 1..N 0..1

0..1
1..N

1..N

1..N
0..1
0..1

Fig. 1.3 KB structure optimized for Pipes

1.5.2 Exact and Approximate Pattern Matching

The described KB supports both exact queries for the patterns with pre-defined
structure and approximate matching for multi-component patterns whose structure
is not known a priori. Patterns are queried for or matched against the ob ject of the
query, i.e., the last modeling construct manipulated by the developer. Conceptually,
all recommendations could be retrieved via similarity search, but for performance
reasons we apply it only when strictly necessary.

Algorithm 9 details this strategy and summarizes the logic implemented by the
recommendation engine. In line 3, we retrieve the types of recommendations that



18 C. Rodrı́guez, S. Roy Chowdhury, F. Daniel, H. R. Motahari Nezhad, F. Casati

Algorithm 9: getRecommendations
Data: query q = 〈ob ject,action, pm〉, knowledge base KB, object-action-recommendation mapping OAR,

component similarity matrix CompSim, similarity threshold Tsim, ranking threshold Trank , number n of
recommendations per recommendation type

Result: recommendations R = [〈cpi,ranki〉]
1 R = array();
2 Patterns = set();
3 recTypeToBeGiven = getRecTypes(ob ject,action,OAR);
4 foreach recType ∈ recTypeToBeGiven do
5 if recType 6= “Mul” then
6 Patterns = Patterns∪ queryPatterns(ob ject,KB,recType) ; // exact query
7 else
8 Patterns = Patterns∪ getSimilarPatterns(ob ject,

KB,CompSim,Tsim) ; // similarity search

9 foreach pat ∈ Patterns do
10 if rank(pat.cp, pat.sim, pm)≥ Trank then
11 append(R,〈pat.cp,rank(pat.cp, pat.sim, pm)〉) ; // rank, threshold, remember

12 orderByRank(R);
13 groupByType(R);
14 truncateByGroup(R,n);
15 return R;

can be given (getSuitableRecTypes function), given an ob ject-action combination.
Then, for each recommendation type, we either query for patterns (the queryPat-
terns function can be seen like a traditional SQL query) or we do a similarity search
(getSimilarPatterns function). For each retrieved pattern, we compute a rank, e.g.,
based on the pattern description (e.g., containing usage and date), the computed
similarity, and the usefulness of the pattern inside the partial mashup, order and
group the recommendations by type, and filter out the best n patterns for each rec-
ommendation type.

As for the retrieval of similar patterns, we give preference to exact matches
of components and connectors in ob ject and allow candidate patterns to differ for
the insertion, deletion, or substitution of at most one component in a given path in
ob ject. Among the non-matching components, we give preference to functionally
similar components (e.g., it may be reasonable to allow a Yahoo! Map instead of
a Google Map); we track this similarity in a dedicated CompSim matrix. For the
detailed explanation of the approximate matching logic we refer the reader to [10].

1.6 Weaving Patterns

Weaving a given composition pattern cp into a partial mashup model pm is not
straightforward and requires a thorough analysis of both cp and pm, in order to
understand how to connect the pattern to the constructs already present in pm. In
essence, weaving a pattern means emulating developer interactions inside the mod-
eling canvas, so as to connect a pattern to the partial mashup. The problem is not
as simple as just copying and pasting the pattern, in that new identifiers of all con-
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structs of cp need to be generated, connectors must be rewritten based on the new
identifiers, and connections with existing constructs may be required.

We approach the problem of pattern weaving by first defining a basic weaving
strategy that is independent of pm and then deriving a contextual weaving strategy
that instead takes into account the structure of pm.

1.6.1 Basic Weaving Strategy

Given an ob ject and a pattern cp of a recommendation, the basic weaving strat-
egy BS provides the sequence of mashup operations that are necessary to weave cp
into the ob ject. The basic weaving strategy does not use pm; it tells how to expand
ob ject into cp (ob ject being a part of cp). This basic strategy is static for each
pattern type and it consists a set of mashup operations that resemble the opera-
tions a developer can typically perform manually in the modeling canvas. Typical
examples of mashup operations are addComponent that corresponds to adding a
new component to pm, addConnector that corresponds to adding a connector be-
tween two selected components in pm, assignValues that corresponds to assigning
values to configuration parameters of a component, and similar. Mashup operations
are applied on the partial mashup pm and result in an updated pm′. All operations
assume that the pm is globally accessible. The internal logic of these operations
are highly platform-specific, in that they need to operate inside the target modeling
environment.

For instance, the basic weaving strategy for a component co-occurrence pat-
tern of type ptypecomp is as follows (we assume ob ject = comp with comp.type =
cx.type, cx being one of the components of the pattern):

1 $newcid5=addComponent(cy.type);
2 addConnector(〈comp.id,cx.op,$newcid,cy.ip〉);
3 assignDataMapping($newcid,cy.DM);
4 assignValues(comp.id,cx.VA);
5 assignValues($newcid,cy.VA);
That is, given a component cx, we add the other component cy (line 1) as men-

tioned in the selected pattern to the pm, connect cx and cy together (line 2) and then
apply the respective data mappings (line 3) and value assignments (line 4 and line
5). Note that, the basic strategy is not yet applied to pm; it represents an array of
basic modeling operations to be further processed before being able to weave the
pattern.

5 We highlight identifier place holders (variables) that can only be resolved when executing the
operation with a “$” prefix.
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Algorithm 10: getWeavingStrategy
Data: partial mashup model pm, composition pattern cp, object ob ject that triggered the recommendation
Result: weaving strategy WS, i.e., a sequence of abstract mashup operations; updated mashup model pm′

1 WS = array();
2 BS = getBasicStrategy(cp,ob ject);
3 foreach instr ∈ BS do
4 CtxInstr = resolveConflict(pm, instr);
5 pm = apply(pm,CtxInstr);
6 append(WS,CtxInstr);

7 return 〈WS, pm〉;

1.6.2 Contextual Weaving Strategy

Given an object ob ject, a pattern cp, and a partial mashup pm, the contextual weav-
ing strategy WS is derived by applying the mashup operations in the basic weaving
strategy to the current partial mashup model and thus by weaving the selected cp
into pm. The WS is dynamically built at runtime by taking into consideration the
structure of the partial mashup (the context).

Applying the mashup operations in the basic weaving strategy may require the
resolution of possible conflicts among the constructs of pm and those of cp. For
instance, if we want to add a new component of type ctype to pm but pm already
contains an instance of type ctype, say comp, we are in the presence of a conflict:
either we decide that we reuse comp, which is already there, or we decide to create a
new instance of ctype. In the former case, we say we apply a soft conflict resolution
policy, in the latter case a hard policy:

Soft: substitute(“$var=addComponent(ctype)”) with “$var = comp.id”
Hard: substitute(“$var=addComponent(ctype)”) with “$var=addComponent(ctype)”
Formally, the conflict resolution policy corresponds to a function resolveCon-

flict(pm, instr) → CtxInstr, where instr is the mashup operation to be applied to
pm and CtxInstr is the set of instructions that replace instr. Only in the case of a
conflict, instr is replaced; otherwise the function returns instr again.

In Algorithm 10 we describe the logic of our pattern weaver. First, it derives a
basic strategy BS for the given composition pattern cp and the ob ject from pm (line
2). Then, for each of the mashup operations instr in the basic strategy, it checks
for possible conflicts with the current modeling context pm (line 4). In case of a
conflict, the function resolveConflict(pm, instr) derives the corresponding contex-
tual weaving instructions CtxInstr replacing the conflicting, basic operation instr.
CtxInstr is then applied to the current pm to compute the updated mashup model
pm′ (line 5), which is then used as basis for weaving the next instr of BS. The
contextual weaving structure WS is constructed as concatenation of all conflict-free
instructions CtxInstr.

Note that Algorithm 10 returns both the list of contextual weaving instructions
WS and the final updated mashup model pm′. The former can be used to interactively
weave cp into pm, the latter to convert pm′ into native formats.
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1.7 Implementation and Evaluation

We have implemented our prototype system, Baya [11], as Mozilla Firefox (http:
//mozilla.com/firefox) extension for Yahoo! Pipes to demonstrate the vi-
ability of our interactive recommendation approach. The design goals behind Baya
can be summarized as follows: We didn’t want to develop yet another mashup envi-
ronment; so we opted for an extension of existing and working solutions (so far, we
focused on Yahoo! Pipes; other tools will follow). Modelers should not be required
to ask for help; we therefore pro-actively and interactively recommend contextual
composition patterns. We did not want the reuse to be limited to simple copy/paste
of patterns, but knowledge should be actionable, and therefore, Baya automatically
weaves patterns.

In Baya we have implemented the model adapters (see Figure 1.2) in Java (1.6),
which are able to convert Yahoo! Pipes’s JSON representation into our canoni-
cal mashup model and back. All the mining algorithms are also implemented in
Java. For the frequent itemset mining we used the tool Carpenter (http://www.
borgelt.net/carpenter.html), while for graph mining we used the tool
MoSS (http://www.borgelt.net/moss.html). The resulting patterns are
expressed in terms of canonical mashup models, which are then converted to native
models (in this case, Yahoo! Pipes JSON representations) by our canonical-to-native
model adapter and loaded into the pattern KB.

For testing our mining algorithms, we used a dataset of 970 pipes definitions from
Yahoo! Pipes that were retrieved using YQL Console (http://developer.
yahoo.com/yql/console/). We selected pipes from the list of “most pop-
ular” pipes, as popular pipes are more likely to be functioning and useful. The aver-
age numbers of components, connectors and input parameters are 11.1, 11.0 and 4.1,
respectively, which is an indication that we are dealing with fairly complex pipes.

The results obtained from running our algorithms on the selected dataset show
that we are able to discover recurrent practices for building mashups. Table 1.1 re-
ports on the list of pattern types and their Upper Threshold for minsupp (UTm). The
UTm tells us what is the upper threshold for the minsupp values at which we start
finding patterns of a given type and for a given dataset. In the cases where we use
more than one type of minsupp (such as in the component co-occurrence pattern
where we use minsuppd f , minsuppdm and minsupppar), the minsupp we consider
is the one corresponding to the pattern that is first computed in the algorithm. For
our dataset, in Table 1.1 we can see that we are always able to find parameter value
patterns for some component types. For example, this is the case of Yahoo! Pipes’
component YQL that has the parameter raw with a default value Results only that is
always kept as-is by the users. From the table we can also notice that the connector
and component co-occurrence patterns have the same UTm value. This is because
in both cases their corresponding algorithms compute first the frequent dataflow
connectors and thus the reference minimum support for the UTm is minsuppd f . Fi-
nally, for the Multi-component pattern we have a UTm of 0.021, a relatively low
value, when we consider patterns with at least 4 components. However, considering
that here we are talking about complex patterns with at least 4 components that,
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furthermore, include dataflow connectors, data mappings and parameter value as-
signments, we can say that, even with a relatively low support value, these patterns
still captures recurrent modeling practices for fairly complex settings.

Pattern type UTm
Parameter value pattern 1
Connector pattern 0.257
Connector co-occurrence pattern 0.072
Component co-occurrence pattern 0.257
Component embedding pattern 0.124
Multi-component pattern 0.021

Table 1.1 Summary of pattern types with their corresponding UTm.

The discovered patterns are transformed and stored in a knowledge base that is
optimized for fast pattern retrieval at runtime. The implementation of the persistent
pattern KB at server side, is based on MySQL (http://www.mysql.com/).
Via a dedicated Java RESTful API, at startup of the recommendation panel the KB
loader synchronizes the server-side KB with the client-side KB, which instead is
based on SQLite (http://www.sqlite.org). The pattern matching and re-
trieval algorithms are implemented in JavaScript and triggered by events generated
by the event listeners monitoring the DOM changes related to the mashup model.

The weaving algorithms are also implemented in JavaScript. Upon the selection
of a recommendation from the panel, they derive the contextual weaving strategy
that is necessary to weave the respective pattern into the partial mashup model. Each
of the instructions in the weaving strategy refers to a modeling action, where mod-
eling actions are implemented as JavaScript manipulations of the mashup model’s
JSON represenation. Both the weaving strategies (basic and contextual) are encoded
as JSON arrays, which enables us to use the native eval() command for fast and
easy parsing of the weaving logic.

Figure 1.4 illustrates the performance of the interactive recommendation algo-
rithm of Baya as described in Algorithm 9 in response to the user placing a new
component into the canvas, a typical modeling situation. Based on the object-action-
recommendation mapping, the algorithm retrieves parameter value, connector, com-
ponent co-occurrence, and multi-component patterns. As expected, the response
times of the simple queries can be neglected compared to the one of the similarity
search for multi-component patterns, which basically dominates the whole recom-
mendation performance. During the performance evaluation for Baya, we have also
observed that the time required for weaving a pattern is negligible with respect to
the total time required for the pattern recommendation and weaving.

1.8 Related work

Traditionally, recommender systems focus on the retrieval of information of likely
interest to a given user, e.g., newspaper articles or books. The likelihood of interest
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Fig. 1.4 Recommendation types and times in response to a new component added to the canvas

is typically computed based on a user profile containing the user’s areas of interest,
and retrieved results may be further refined with collaborative filtering techniques.
In our work, as for now we focus less on the user and more on the partial mashup
under development (we will take user preferences into account in a later stage), that
is, recommendations must match the partial mashup model and the object the user
is focusing on, not his interests. The approach is related to the one followed by
research on automatic service selection, e.g., in the context of QoS- or reputation-
aware service selection, or adaptive or self-healing service compositions. Yet, while
these techniques typically approach the problem of selecting a concrete service for
an abstract activity at runtime, we aim at interactively assisting developers at design
time with domain knowledge in the form of modeling patterns.

In the context of web mashups, Carlson et al. [2], for instance, react to a user’s
selection of a component with a recommendation for the next component to be
used; the approach is based on semantic annotations of component descriptors and
makes use of WordNet for disambiguation. Greenshpan et al. [6] propose an auto-
completion approach that recommends components and connectors (so-called glue
patterns) in response to the user providing a set of desired components; the ap-
proach computes top-k recommendations out of a graph-structured knowledge base
containing components and glue patterns (the nodes) and their relationships (the
arcs). While in this approach the actual structure (the graph) of the knowledge base
is hidden to the user, Chen et al. [3] allow the user to mashup components by nav-
igating a graph of components and connectors; the graph is generated in response
to the user’s query in form of descriptive keywords. Riabov et al. [9] also follow a
keyword-based approach to express user goals, which they use to feed an automated
planner that derives candidate mashups; according to the authors, obtaining a plan
may require several seconds. Elmeleegy et al. [5] propose MashupAdvisor, a system
that, starting from a component placed by the user, recommends a set of related com-
ponents (based on conditional co-occurrence probabilities and semantic matching);
upon selection of a component, MashupAdvisor uses automatic planning to derive
how to connect the selected component with the partial mashup, a process that may
also take more than one minute. Beauche and Poizat [1] use automatic planning in
service composition. The planner generates a candidate composition starting from
a user task and a set of user-specified services.
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The business process management (BPM) community more strongly focuses on
patterns as a means of knowledge reuse. For instance, Smirnov et al. [12] provide
so-called co-occurrence action patterns in response to action/task specifications by
the user; recommendations are provided based on label similarity, and also come
with the necessary control flow logic to connect the suggested action. Hornung et
al. [8] provide users with a keyword search facility that allows them to retrieve
process models whose labels are related to the provided keywords; the algorithm
applies the traditional TF-IDF technique from information retrieval to process mod-
els, turning the repository of process models into a keyword vector space. Gschwind
et al. [7] allow users to use the control flow patterns introduced by Van der Aalst et
al. [14], just like other modeling elements. The system does not provide interactive
recommendations and rather focuses on the correct insertion of patterns.

In summary, assisted mashup and service composition approaches either focus
on single components or connectors, or they aim to auto-complete compositions
starting from user goals by using AI Planning techniques. The BPM approaches do
focus on patterns, but most of the times pattern similarity is based on label/text sim-
ilarity, not on structural compatibility. In our work, we consider that if components
have been used together successfully multiple times, very likely their joint use is
both syntactically and semantically meaningful. Hence, there is no need to further
model complex ontologies or composition rules. Another key difference is that we
leverage on the interactive recommendation of composition patterns to assists users
step-by-step based on their actions on the design canvas. We do not only tell users
which patterns may be applied to progress in the mashup composition process, but
we also automatically weave recommended patterns on behalf of the users.

1.9 Conclusions

With this work, we aim to pave the road for assisted development in web-based
composition environments. We represent reusable knowledge as patterns, explain
how to automatically discover patterns from existing mashup models, describe how
to recommend patterns fast, and how to weave them into partial mashup models. We
therefore provide the basic technology for assisted development, demonstrating that
the solutions proposed indeed work in practice.

As for the discovery of patterns, it is important to note that even patterns with
very low support carry valuable information. Of course, they do not represent gen-
erally valid solutions or complex best practices in a given domain, but still they show
how its constructs have been used in the past. This property is a positive side-effect
of the sensible, a-priori design of the pattern structures we are looking for. Without
that, discovered patterns would require much higher support values, so as to provide
evidence that also their pattern structure is meaningful. Our analysis of the patterns
discovered by our algorithms shows that, in order to get the best out them, domain
knowledge inside the mashup models is crucial. Domain-specific mashups, in which
composition elements and constructs have specific domain semantics, are a thread of
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research we are already following. As a next step, we will also extend the canonical
model toward more generic mashup languages, e.g., including UI synchronization.

The results of our tests of the pattern recommendation approach even outperform
our own expectations, also for large numbers of patterns. In practice, however, the
number of really meaningful patterns in a given modeling domain will only unlikely
grow beyond several dozens. The described recommending approach will therefore
work well also in the context of other browser-based modeling tools, e.g., business
process or service composition instruments (which are also model-based and of sim-
ilar complexity), while very likely it will perform even better in desktop-based mod-
eling tools like the various Eclipse-based visual editors. Recommendation retrieval
times of fractions of seconds and negligible pattern weaving times will definitely
allow us – and others – to develop more sophisticated, assisted composition envi-
ronments. This is, of course, our goal for the future – next to going back to the users
of our initial study and testing the effectiveness of assisted development in practice.
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