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Abstract—Business process management, service-oriented ar-
chitectures and software back-engineering heavily rely on the
fundamental processes of mining of processes and web service
business protocols from log files. Model extraction and mining
aim at the (re)discovery of the behavior of a running model
implementation using solely its interaction and activity traces,
and no a priori information on the target model. This paper
presents an approach for correlating messages and extracting
the business protocol of a web service in the realistic scenario in
which correlation information is entirely absent from interaction
and activity logs. Correlation is achieved through determinis-
tic computations that result in an extremely efficient method
whose extensive experiments have shown its solid reliability,
robustness when dealing with complex structures, and very high
performance and scalability. This approach and the underlying
algorithms extend what is actually possible to achieve in the web
service business protocol mining domain using incomplete and
noisy data logs, and opens new horizons in back-engineering of
web services. The theoretical and experimental results clearly
show the leap forward achieved herein.

I. INTRODUCTION

Workflow management systems (WFMSs) and service-
oriented architectures (SOAs) are continuously and steadily
relying on mining techniques for achieving a broad range of
objectives. In this paper we extend the usage of process mining
described in [23] to web service business protocol mining
(WSPM). This is because the process of distilling a structured
model description from a set of real executions concerns
not only business processes and workflows, but also business
protocols [3] of Web services, service-oriented architectures
(SOAs) etc.

WSPM is useful for many reasons. First of all, it could be
used as a tool to find out how people and/or procedures really
work. Second, process mining could be used for Divergence
analysis (DA), i.e., studying the differences between the actual

Fig. 1. The general process of business protocol discovery [22].

implementations with the predefined behavioral model. DA
is a more generic process which encompasses delta analysis
[23] as a particular case, and also addresses the differences
between business protocols, SOA software, models based on
finite-state machines (FSM),... Applications of log mining
for service protocol extraction include: post-mortem moni-
toring, checking the equivalence between the descriptive or
prescriptive model and the actual implementation. The last
application is mandatory for critical systems before deploying
them online or in business platforms. We also can mention
obtaining the descriptive or prescriptive model if it doesn’t
exist, checking for security flaws, and verifying that constraints
in the execution flows are satisfied.

Yet, all the existing tools and approaches addressing mining
in WFMSs and SOAs (ProM [24], Process spaceship [18]
etc.) have to deal with data correlation problems which arise
from the very nature of log data which tends not to fit
the expectations of mining algorithms. Almost all existing
approaches that address process and business protocol mining
[21], [23] assume that it is possible to record data such
that (i) each logged entity refers to a message or event (i.e.
a unique state in the web service, or a well-defined step
in the workflow), (ii) each message or event refers to a



case (i.e. a web service instance, workflow, or process), (iii)
messages are totally ordered (i.e., in the log these messages are
recorded sequentially), and (iv) logs contain all the information
needed to correlate them to a given instance sequence. The
logs considered in this paper do not obey anymore to the
requirement of containing sufficient information as in [17],
[19], [21], [23].

Moreover, since logs are often incomplete, uncertain and
contain errors, then the first difficulty of protocol mining
and message correlation approaches is the detection of these
imperfections in logs. The most important factors that need
to be addressed are log incompleteness and noise errors.
Examples of log incompleteness are: (i) missing messages
(messages are not recorded in the log), (ii) swapping messages
(messages are recorded in a different order that does not reflect
the real one during execution), and (iii) partial conversations
(i.e. the conversation is terminated before completion). Noise
errors include a large set of causes that introduce errors in the
log during all the steps of the service execution and logging
mechanism (hardware and failure, network problems etc.).

In this context we present the delta algorithm for correlation
of messages into conversations, and service protocol discovery.

The contributions of this paper can be listed as follows:
1) Correlation of conversations with minimal assumptions

on log data.
2) Algorithm capable of recognizing complex structures

such as ramifications, simple and composite loops.
3) Proposal of combining statistical computations in a de-

terministic result that discovers the class of discoverable
behavior models.

Experiments are conducted for performance and noise-proof
robustness. The delta algorithm aims at (i) providing the start-
ing point for every single log-based mining method: correctly
correlated and instance-sequenced data, and (ii) allowing the
easy and immediate reconstruction of the model that visually
displays the web service business protocol (WSBP).

The remainder of this paper is organized as follows. In
Section II we introduce the required preliminaries. Section III
studies the relations between messages that the delta algorithm
is capable of detecting in logs for achieving correlation.
Based on these results, different versions of the algorithm for
correlation and WSBP mining are presented. The quality and
capabilities of this algorithm are supported and enhanced by
the fact that it is able to rediscover correlation under very
severe and limiting conditions. The paper continues in Section
IV with a running example that illustrates some important
aspects of the approach Section V presents the experimental
results. Section VI deals with a survey on related work and
we conclude in Section VII.

II. PRELIMINARIES

A. Notations and definitions

Let Msg be a set of message labels. A message type will
refer to the label of a message. A message occurrence is
a couple M = (m, t), where m ∈ Msg is the message

type, and t ∈ IR+ is the timestamp of the message (de-
noted M.t). A message log (ML) is a collection of entries
e = (MID,m, s, r, c, t), where MID is the message unique
identifier, m is the message type, s and r denote the sender
and the receiver of message m, c the content of the message,
and t is the corresponding timestamp. The timestamps are
local, in the sense that no global clock is needed. If x is a
message type, we will denote by x̄ the number of occurrences
of x recorded in a message log ML. An occurrence log
(OL) is an array in which each column designates a message
type, and the corresponding row value provides the number
of occurrences found for that message type in a message log
ML. In other words, every message log MLi is represented
as a single line in the occurrence log OL. A conversation is
a sequence of message occurrences C = 〈M1,M2, . . . ,Mn〉,
where n ∈ IIN∗, and M1.t < M2.t < · · · < Mn.t. Each
web service client exchanges a precise sequence of message
occurrences (i.e. a conversation) during the interaction with the
web service provider. A conversation log file L is a multi-set
of conversations.
Definition 1 A business protocol (BP) [4] is a tuple P =
(S, s0,F ,Msg,R) which consists of the following elements:
1. S is a finite set of states.
2. s0 ∈ S is the initial state.
3. F ⊆ S is a set of final states. If F = ∅, then P is said to
be an empty protocol.
4. Msg is a finite set of messages. For each message m ∈
Msg, a function Polarity(P,m) is defined which is positive
(+) if m is an input message in P and negative (-) if m is an
output message in P . The notation m(+) (respectively, m(-))
is used to denote the polarity of a message m.
5. a finite set R ⊆ S2 ×Msg of transitions. Each transition
(s, s′,m) identifies a source state s, a target state s′ and either
an input or an output message m that is either consumed or
produced during this transition.
BP were specifically introduced to model the internal behavior
of web services.

B. Linear regression

During the runtime of a WS, a conversation of messages
is exchanged between the client and the service provider. The
business protocol visualizes all the possible conversations that
are allowed by this WS. When considering the protocol of a
WS during runtime, one observes that message occurrences do
not appear or disappear in a chaotic way. The first intuition is
that the numbers of message occurrences for different message
types are correlated between each other. This intuition leads to
another one: that there is a law to which obeys the appearance
of message occurrences in the log. For example, if the loop-
free conversation sequence 〈A,B,C,D〉 is followed three
times, then one naturally expects to find three occurrences for
each message of this conversation.

The idea in this paper is to use linear regression methods to
derive the equations that describe the relationships which exist
between the numbers of different message occurrences. This
is beneficial for many reasons. First, in order to achieve the



correlations between messages, the linear regression method
requires only the number of occurrences for the given mes-
sages. To extract the full protocol after the correlation step,
the approach needs only the recorded timestamps of message
occurrences. Thus, an approach based on these intuitions and
also linear regression offers the advantage of requiring only
a very restricted quantity of log information. Second, linear
regression is robust towards some of the forms of noise.
In this paper, noise that may affect the approach result is
considered to come in two different ways. It can appear as
missing message occurrences or erroneous timestamps. Both
cases were considered during experimentations.

In statistics, linear regression refers to any approach that
models in a linear fashion the relationship between one or
more variables denoted by y and one or more variables denoted
by X . In such case, the denomination ”linear model” is
employed. When considering a data set {yi, xi1, ..., xik}, i =
1, ..., n of statistical variables, a linear regression method can
be applied between the dependent variable yi and the vector of
regressors xi of size k iff the relationship between them is, at
least approximately, linear. This linear relationship between y
and xi is expressed as yi = β1xi1+· · ·+βpxip+εi = x′iβ+εi,
i = 1, ..., n. For a more detailed introduction in the regression
tools used in this paper please refer to [15]. In this paper, the
linear regression inference is obtained by using the linear least
squares approach.

Linear least squares (LLS) [6], [11] is a method employed
for computing the linear regression and for fitting data to a
mathematical or statistical model. The general problem can
be stated as follows. Consider an overdetermined system:

n∑
j=1

Xijβj = yi(i = 1, ...,m) (1)

of m simultaneous linear equations (SLE) in n unknown
coefficients, β1, β2, ..., βn with m > n, written in matrix
form as Xβ = y where:

X =


X1,1 · · · X1,n

X2,1 · · · X2,n

...
. . .

...
Xm,1 · · · Xm,n

 β =


β1
β2
...
βn

 y =


y1
y2
...
ym


In statistics, LLS is the computational foundation for or-

dinary least squares analysis (OLS), which is the method
of regression analysis employed in this paper. The formulas
for linear least squares fitting were derived by Gauss [13].
The algorithms in this paper employ LLS because LLS is
at the same time simple and efficient in inferring the linear
equations which describe the flow of messages in a business
protocol. Ordinary least squares is the simplest and the most
widely used method for estimating the parameter β. OLS is
often employed to model experimental and observational data.
Suppose b is a candidate value for an estimate of parameter β.
Then the expression yi−x′ib will be called the residual of i-th
observation. The value of b which provides the minimal value

TABLE I
OCCURRENCE LOG LINE OL1 DERIVED FROM THE LOG IN TABLE II-B

LR CT MO TT LP
2 2 1 1 1

for this expression will be called the least squares estimator
for β.

III. CORRELATION AND DISCOVERY APPROACH

In this section we provide some introductory examples and
describe how the the process of correlating messages and
inferring the business protocol is achieved. 1

Example 1 Table I depicts the occurrence log OL1 which
records the number of occurrences for each type of message
encountered in the log ML1. An example of the logs con-
sidered in this paper is given in Table II. We recall that a
message type is represented by its label. Each single row in
OL1 is deduced from an entire raw message log MLi. Thus,
an occurrence log can be seen as a very compact form of
raw web service logs. This condensate form is at the basis of
the approach presented here for achieving the correlation of
messages.

A. Modeling the dynamics of BP messages.

Proposition 1 The algebraic notation of a protocol is
equivalent to its FSM representation in terms of descriptive
power.

Consider the protocol sample shown in Figure 2. In all the
protocol figures shown in this paper, the dashed circles repre-
sent terminal states, as opposed to full circles that designate
normal states. This example will describe how a set of linear
equations describes the dynamics of messages in a business
protocol with loops. The SLE provided in Equation 2 describes
this protocol in algebraic terms. The equations marked with
the same number of asterisks (*) or (**) are algebraically
equivalent.

Fig. 2. Simplified business protocol.

1The theoretical proofs of the proposition and theo-
rems, as well as additional results can be found at:
http://liris.cnrs.fr/kreshnik.musaraj/research/papers/ICWS-Tech-Report.pdf



TABLE II
EXAMPLE OF RAW LOG ML1 OF SOAP-BASED SERVICE EXECUTION MESSAGES

MessageID Message label SenderID ReceiverID Polarity Message content Timestamp
M1 LoginRequest 192.168.5.1 192.168.15.4 + <?xml version = ”1.0” ... > 2010 : 01 : 07 13 : 52
M2 CommitTransaction 192.168.15.4 192.168.5.1 − <?xml version = ”1.0” ... > 2010 : 01 : 07 13 : 55
M3 ModifyOperation 192.168.5.1 192.168.15.4 + <?xml version = ”1.0” ... > 2010 : 01 : 07 13 : 60
M3 LoginRequest 192.168.5.1 192.168.21.7 + <?xml version = ”1.0” ... > 2010 : 05 : 07 07 : 15
M4 CommitTransaction 192.168.21.7 192.168.5.1 − <?xml version = ”1.0” ... > 2010 : 05 : 07 07 : 26
M5 TerminateTransaction 192.168.5.1 192.168.21.7 + <?xml version = ”1.0” ... > 2010 : 05 : 07 07 : 35
M6 LogoutProcedure 192.168.21.7 192.168.5.1 − <?xml version = ”1.0” ... > 2010 : 05 : 07 07 : 46



1. c̄ = ā− b̄+ d̄+ h̄
2. b̄ = ā+ d̄− c̄+ h̄
3. d̄ = ē− f̄ (∗)
4. ē = b̄− ī (∗∗)
5. f̄ = ē− d̄ (∗)
6. ḡ = c̄
7. h̄ = f̄ + ḡ
8. ī = b̄− ē (∗∗)

(2)

The method for constructing the SLE starts by considering
each state at a time. Each linear equation is related to a
state and provides the flow of messages in and out that
particular state. Since there are several potential messages
entering or leaving a state, then there may be several equations
corresponding to a state. An equation describes a linear rela-
tionship between the number of occurrences of all messages
that are directly related to a particular state. A given variable
(a label with a bar) in an equation represents the number
of occurrences of the message having the same label as the
variable. On the right side of the equality sign are located
all the other variables related to the remaining messages of
that same state. Each variable is associated with a coefficient.
The variables on the right side have either a + or − sign.
This sign is very important since +-signed variables represent
messages that exit the corresponding state, and negative-signed
variables stand for messages entering that state. Theoretically,
all coefficients are ±1, since a message can neither be split
in two, nor created or disappear. Nevertheless, since the
logs we consider here may exhibit defaults, such as missing
messages, and because of existing loops then the experimental
coefficients may be non-integer values. Experimental results
however allow to define the interval inside which a coefficient
value is considered as trustworthy. Moreover, we exploit the
high-value coefficients to detect the existence of complex
structures with unprecedented ease.

Consider the generic form of the state of a business protocol
depicted in Figure 3.

Fig. 3. General form of a protocol state.

For a given existing message Ak, 1 ≤ k ≤ m the following

equation can be stated:

Āk =

n∑
j=1

B̄j −
m∑
l=1

Āl + Āk =

n∑
j=1

B̄j −
m∑

l=1,l 6=k

Āl (3)

where Āk denotes the number of occurrences of message type
Ak that have transited outside state State. Note the difference
between the number of types of messages (denoted by n) and
the number of occurrences of each type of message. A type of
message example corresponds simply to a message label e.g.
”browseProducts”. Equation (3) is correct since the total of
messages occurrences entering a state is obviously the same
as the number of those exiting the same state. In other words:

n∑
j=1

B̄j −
m∑
l=1

Āl = 0 (4)

One can now see that Equation (3) is obtained by adding Āk to
both sides of Equation (4) which is arithmetically equivalent.
Moreover, Equation (4) states the law of conservation of the
number of message occurrences.

B. Algorithmic procedures

Let us introduce the algorithms that exploit the SLE ap-
proach in different ways.

1) The naive approach: the n−delta algorithm: The naive
version of the algorithm uses as input the log containing all
message occurrences recorded during the web service activity.
The corresponding pseudo-code is shown in Algorithm 1. The
algorithm proceeds by taking a message type vector at a time,
and by computing the coefficients of all the possible equations
that can be obtained throughout all possible combinations of
message type in equations of size i. The provided result is the
set of correlation matrixes. The logical AND-sum of all the
correlation matrix yields the final correlation matrix.
Theorem 1 The complexity of the naive-delta (n-delta)
algorithm is O(2n)

The optimal version of the delta algorithm, which is shown
in Algorithm 2, uses the same input as naive − delta. The
algorithm proceeds in a much simpler fashion by taking a
message type vector at a time, and by computing only the
coefficients of the equations of size n − 1. This algorithm
provides directly the final correlation matrix.



Algorithm 1 naive− delta
Require: Occurrence log A of n message types
Ensure: Mxi the set of correlation matrixes // n− 1 in total

1: for i = 1 to n− 1 do
2: B = A
3: while B 6= ∅ do
4: Choose an occurrence vector b ∈ B
5: Remove the column of b from B
6: Rs = B // Rs is the matrix of regressors
7: RegressorsSet = combinations(Rs, i) // the set of non-

redundant combinations of i elements.
8: while RegressorsSet 6= ∅ do
9: Choose ri ∈ RegressorsSet

10: // ri is an occurrence vector of size i
11: Remove the column of ri from RegressorsSet
12: C = OrdinaryLeastSquares(ri, b)
13: Insert correlation vector C in matrix Mxi

14: end while
15: end while
16: end for

Algorithm 2 delta
Require: Occurrence log A of n message types
Ensure: Mx the correlation matrix

1: B = A
2: while B 6= ∅ do
3: Choose an occurrence vector b ∈ B
4: Remove the column of b from B
5: Rs = A // Rs is the matrix of regressors
6: Remove the column of b from Rs
7: C = OrdinaryLeastSquares(Rs, b)
8: Insert correlation vector C in matrix Mx

9: end while

2) The optimal approach: delta algorithm: The complexity
of Algorithm 2 is sensibly lower, as shows the following
theorem.

Theorem 2 The complexity of the delta algorithm is O(n2)

In most web service protocols the number of message
type n is generally low. To give an idea on the order of
magnitude, very large protocols such as eBay Trading service
achieve a maximum of 64 message types [10]. Thus the
square polynomial complexity has no significant impact on
the overall performance of the algorithm. On the other hand,
what is of a much greater influence is the number of message
occurrences stored into logs, since their number can reach
very large values. The complexity of the algorithm that counts
the number of occurrences for each message type will then
determine the overall complexity of the approach. If N is
the number of all the different message occurrences stored
in the service logs and M the number of message types,
then the complexity of the counting algorithm is O(M ×N).
Since N is by many orders of magnitude greater than M ,
thus the resulting complexity is O(N). In conclusion, the
occurrence counting algorithm has a linear complexity. A
direct consequence of this result is that the overall process of
extracting the SLE that allows to mine the service business

TABLE III
GENERAL FORM OF THE CORRELATION MATRIX WITH METHOD RESULT.

a1 a2 ..... am−1 am
a1 0 i1,2 ..... i1,m−1 i1,m
a2 i2,1 0 ..... i2,m−1 i2,m
... ... ... ..... ... ...
... ... ... ..... ... ...
... ... ... ..... ... ...

am−1 im−1,1 im−1,2 ..... 0 im−1,m

am im,1 im,2 ..... im,m−1 0

TABLE IV
SINGLE OCCURRENCE VECTOR

a
a 0
b +1
c −1
d +1
e 0
f 0

protocol has an remarkably good performance. The minor
influence of the polynomial sub-algorithm was confirmed by
experimental results on synthetic logs, as is shown in Section
IV.

C. Result interpretation and visualization

The result provided by the algorithm is a matrix composed
of correlation vectors. The vectors correspond to the columns
of the matrix. This correlation matrix allows to easily obtain
the SLE corresponding to a protocol. Table III shows the
generic form of this array. Let m be the number of message
types in a protocol and a1, a2, ... am, the message types
that need to be correlated. The correlation matrix provides
the coefficients that are to be used in an equation involving a
variable ai on the left side, and variables aj , (j 6= i) on the
right side. If we have the matrix column shown in Table IV,
the corresponding equation that is derived from this column
is:

1× ā = 1× b̄− 1× c̄+ 1× d̄+ 0× ē+ 0× f̄ = b̄− c̄+ d̄ (5)

This equation describes two possible cases, that are illustrated
in Figure 4. Note that the only difference between the two
cases is the direction of message flow. In Figure 4(a), messages
b, d enter the state and a, c exit it, while in (b) we have the
reverse situation. The choice between these two possibilities
is made by employing the timestamps of message occurrences
to establish order relationships.

Fig. 4. Graph-represented equivalent of a linear equation where incoming
messages (a) become outgoing (b).



TABLE V
OCCURRENCE LOG OF SAMPLE PROTOCOL IN FIGURE 5

a b c d e
10 5 5 3 2
12 7 5 3 4
15 8 7 5 3
20 13 7 9 4
31 14 17 8 6

TABLE VI
COEFFICIENT MATRIX COMPUTED FROM TABLE V

a b c d e
a 0 0 1 0 0
b 1 0 0 1 1
c 1 0 0 0 0
d 0 1 -1 0 -1
e 0 1 -1 -1 0

The matrix is to be interpreted as follows: we consider
each column at a time. If for row k and column l the value
ikl is 0, then the message type corresponding to that row is
not correlated to the message type associated with column
l. Thus, each column expresses via a proper linear equation
the correlation between the corresponding message type and
the other message types. Note in Table III that the diagonal
values of the correlation matrix are always zero. This is
done arbitrarily since the correlation between a message type
and itself is always valid, thus not relevant. Furthermore,
experiments have shown that for a correlation to be correctly
estimated, the coefficient values ai are to be found in the
interval: 0.91 < ai < 1.09.

IV. CORRELATION AND DISCOVERY: A USE-CASE
EXAMPLE

Fig. 5. Use-case for correlation and business protocol discovery.

Let us illustrate how the approach achieves the correlation of
messages and protocol discovery using the following example.
Example 2 Consider the simple protocol in Figure 5. Table
V shows the occurrence log deduced from message logs issued
by the protocol in Figure 5. When the algorithm is run on this
log, we obtain the resulting matrix in Table VI. We observe
that the result corresponds to the expected solution. Moreover
we observe that the condition i < j is necessary because it
provides the most convergent solution that the LSF method
can find on a rank deficient occurrence log.
Starting from the correlation matrix in Table VI we obtain the
linear system shown in Equation 6. This linear system leads
to the straightforward states shown in Figure 6. Equation 1 is
translated into the first state (Figure 6(a)), while equations 2, 4,

TABLE VII
IMPACT OF M ON SCALABILITY AND PERFORMANCE.

# Msg. type (M) Min. MT (s.) Max. MT (s.) Avg. MT(s.)
10 0.004 0.030 0.017
25 0.010 0.060 0.035
50 0.070 0.140 0.105
75 0.190 0.280 0.235
100 0.370 0.520 0.445
200 3.170 4.960 4.065

5 provide the state shown in Figure 6(b) and equation 3 gives
the state (c) of the same figure. From the SLE in Equation
6 we see that b̄ = d̄ + ē and the log timestamps of b always
precede those of d and e. Thus, the only possible outcome that
unifies these three states is the one already shown in Figure
5.
Loops are easily identified by the fact that the coefficients
of message types generated by loops have an absolute value
much greater than 1. For more details on the reasons behind,
please refer to the technical report (link provided as a footnote,
Section III). 

1. ā = b̄+ c̄
2. b̄ = d̄+ ē
3. c̄ = ā− d̄− ē
4. d̄ = b̄− ē
5. ē = b̄− d̄

(6)

Fig. 6. States obtained from (a) equation 1, (b) equations 2, 4, 5, and (c)
equation 3 from the linear system in Equation 6.

V. EXPERIMENTAL RESULTS

Synthetic data generated by a business protocol simulator
were used to test the correctness and performance of the algo-
rithms.2 Experiments were conducted to study the scalability
of delta. The influence of noise was also investigated by
introducing errors in the logs. The desired percentage of errors
introduced was variable so that the evolution of the behavior
of the algorithm would be clearer. The business protocols
employed for synthetic data generation are of realistic sizes
(up to 100 message types and 106 web service instance
conversations). The implementation of the algorithm and the
experiments are conducted using Matlab. Nevertheless, the
migration towards other mathematical software requires little
effort.

Table VII shows the experimental results on the comparative
performance of the delta algorithm versus the scalability of

2The simulation tool can be downloaded at
http://liris.cnrs.fr/kreshnik.musaraj/technology/simulation/index.html. The
Matlab models used as well as the source code of the algorithms can be
downloaded at http://liris.cnrs.fr/kreshnik.musaraj/technology/ws/index.html



TABLE VIII
IMPACT OF N ON SCALABILITY AND PERFORMANCE.

# Msg. occ. (N) Min. MT (s.) Max. MT (s.) Avg. MT(s.)
1000 0.10 0.50 0.30
2000 0.30 1.10 0.65
5000 0.92 2.50 1.71

10000 2.10 3.62 5.13
50000 27.50 32.06 29.78

1000000 57.01 67.29 62.15

TABLE IX
IMPACT OF NOISE ON COEFFICIENT ESTIMATION WITH OLS

∆ #Occurrences (%) Avg. ∆ #Coefficients (%)
1 ± 0.03
5 ± 0.7
10 ± 15.7
20 ± 45.0

message types. Min. MT , Max. MT and Avg. MT stand
for respectively Minimal, Maximal and Average Measured
Time. Table VII clearly proves that employing OLS for
constructing the correlation matrix is extremely efficient. Table
VIII depicts instead the same comparative performance of the
algorithm but this time it is based on the number of message
occurrences. One should observe the convergence of Min.
MT and Max. MT towards Avg. MT for increasing values
of M and N .

Table IX shows the impact of noise on the values of
coefficients estimated using OLS. The first column provides
the difference in percentage between the accurate number of
occurrences and the value reported on the noisy occurrence
log. The second column shows the percentage of divergence
between the coefficients estimated using perfect data and
the values estimated using message logs subject to missing
message occurrences. It is important to notice that, when
exposed to incorrect occurrence logs, the method will provide
the correlation matrix that best fits the data. In this sense, the
resulting protocol will be adapted to each occurrence log, thus
the result will evolve as a function of the accuracy of the log.
Nevertheless, noise impacts mainly the data contained in the
recorded messages, and the rate of missing messages is much
lower than the rate of incorrect data. The only exception is
the case of error-prone log software, which goes beyond the
scope of this paper.

VI. RELATED WORK

The business protocol discovery problem addressed in [19]
and [16] can be considered as a particular case of a more
general issue: the extraction of a model from its instances.
Literature related to model discovery is extensive, for example
in grammatical inference [2], [20], in workflow mining [1], [7],
[14], [23], or in Web services interaction mining [9]. In gram-
matical inference, the problem consists in finding a grammar
generating a language, given a set of words that belong to this
language, and a set of words that do not belong to it; using
both positive and negative examples allows producing a correct
model. The business protocol discovery problem is different in

the sense that only (noisy and incomplete) positive instances
are available. In Web services interaction mining, the goal is
to discover from logs a workflow modelling the interactions
that take place between several services. Despite the similar
context, this differs from business protocol discovery in its
knowledge extraction level; in [16], [19] cross-services proto-
cols are not considered. Workflow mining (or software process
discovery) is very similar to business protocol discovery. The
main differences between all techniques lie in the choice of
the model (automaton [7], [16], [19], Petri net [23] or directed
graph [1], [14]), in the fact that noise is considered [1], [7],
[14], [16], [19] or not [23], and that the extraction process
allows user driven refinement [16], [19] or not [1], [7], [14],
[23]. Recent improvements in the discovery of process models
are provided in [12] where the authors address the problem of
discovering the process model when the event log is provided
as an unlabelled stream of events; and [5] where we encounter
a set of techniques for employing the theory of regions to
transform a log into a Petri net.

At the same time the work reported in [16], [19] was
achieved, similar techniques [8] were developed, though with
quite different concerns. In [8] the concepts of interaction
and interaction protocol are used equivalently to conversation
and business protocol. The goal is to solve an interoperability
problem between a client and several Web services that
expose the same interface but may have different interaction
protocols. The proposed solution consists in automatically
extracting approximated interaction protocols from recorded
interactions (between these services and previous users). The
main advantage of the approach presented in [8] is that it
is fully automatic, which is essential in a service discovery
architecture. However, this can be an important drawback in
the service management and re-engineering area, where it is
essential to allow a user driven refinement of the extracted
model [16], [19], [21].

It is clear from this bibliography analysis that in the Web
services field, the majority of works focus on the process
discovery (workflows) and protocol discovery [19], [21], [22].
The scope of this paper is limited to the issue of protocol
discovery. There are two main internal directions in this field:
protocol discovery using conversation logs (messages log with
conversation identifiers) and using message logs (messages log
without conversation identifiers). The first direction has been
investigated extensively. Meanwhile, the issue of dealing with
message logs without conversation identifiers is a topic that
has started to gain importance only during recent years [21],
[22]. In [22] the authors model logs using graphs and employ
graph theory techniques to extract the conversations and build
the Business Protocol. For converting the initial message graph
into a reduced one, the authors use the Dempster-Shafers
mathematical theory of evidence. While in [21], two types of
correlation information are used for conversation discovery.
The first one is key-based correlation, in which a unique
identification value is used for correlating messages in a single
conversation. The other type is reference-based (or also known
as chain-based), whose principle is using a reference which



points to the preceding message in the conversation sequence.
Despite their importance, the existing approaches either

require strong assumptions such as the conversation identifier
[23], sufficient information in logs [21], or hypothesis that
might not be correct in realistic scenarios [22]. This urges for
an approach that requires as few assumptions as possible while
presenting a high performance, offering an optimal accuracy
and robustness towards noise.

VII. CONCLUSIONS AND FUTURE WORK

Conversation mining by means of message correlation for
web services business protocol mining is an important step
in SOA architectures. This domain requires further attention
since it is far from being exhaustively explored. This motivates
the efforts on establishing automatic methods for message
correlation relying on virtually no assumptions on the logs
used as starting point. This concerns not only the properties
of log data (absence of noise, statistical properties etc.) but
also the data content itself, which is subject to change in large
measures depending on the context and SOA implementations.
Our contributions are: (i) Correlation of messages using almost
no information aside message timestamps, (ii) Modeling of the
the dynamic flow of messages into a business protocol without
any prior knowledge, (iii) Business protocol generation from
the algebraic description of the flow of messages, and (iv) A
linear-complexity algorithm for the correlation and discovery
process. We provided an algebraic form that is equivalent
to the finite-state machine notation of a business protocol
to continue on obtaining the linear system that described a
business protocol by means of linear regression techniques.
This was achieved via the Ordinary Least Squares estimator
that was shown to be noise-resistent while providing the
coefficients of the linear equations. The estimator allowed to
obtain a low-complexity / high performance algorithm that is
capable of dealing with huge logs.

In the future we intend to combine the delta algorithm
with other methods that already provide protocol mining
from conversation logs. An on-going effort is addressing the
extension of the algorithm into the Business Process mining
domain. In order to achieve this, the delta algorithm needs
to be adapted to account for process-specific patterns such as
parallel transitions, AND-splits, AND-joins etc. Preliminary
results are very optimistic and show that this approach has
generic capabilities that go beyond technical details of service
logs and domain-related particularities. Another perspective
that we plan to investigate is the adaptation of the delta algo-
rithm in order to extract cross-organizational service protocol,
and to mine logs generated from composite web services.
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