
Interactive, Live Mashup Development
through UI-Oriented Computing

Anis Nouri and Florian Daniel

University of Trento
Via Sommarive 9, I-38123, Povo (TN), Italy

anis.nouri-1@studenti.unitn.it,daniel@disi.unitn.it

Abstract. This paper proposes to approach the problem of developing
mashups by exclusively focusing on the Surface Web, that is, the data and
functionality accessible through common Web pages. Typically, mashups
focus on the integration of resources accessible through the Deep Web,
such as data feeds, Web services and Web APIs, that do not have own UIs
– next to data extracted from Web pages. Yet, these resources can be
wrapped with ad-doc UIs, suitably instrumented, and made accessible
through the Surface Web. Doing so enables a UI-oriented computing
paradigm that allows developers to implement mashups interactively and
in a live fashion inside their Web browser, without having to program any
line of code. The goal of this paper is to showcase UI-oriented computing
in practice and to demonstrate its feasibility and potential.

Keywords: UI-oriented computing, iAPIs, mashups, integration

1 Introduction

The most notable technologies today to publish and access data and functionality
over the Web are SOAP/WSDL Web services [2], RESTful Web services [12],
RSS/Atom feeds, and static XML/JSON/CSV resources. Alternatively, data
may be rendered in and scraped from HTML Web pages, for example, using
tools like Dapper (http://open.dapper.net) or similar that publish extracted
content again via any of the previous technologies. W3C widgets [4] or Java
portlets [1] are technologies for the reuse of small, full-fledged applications that
also provide for the reuse of user interfaces (UIs).

All these technologies (except the Web pages) are oriented toward program-
mers, and understanding the underlying abstractions and usage conventions re-
quires significant software development expertise. This makes data integration a
prerogative of skilled programmers, turns it into a complex and time-consuming
endeavor (even for small integration scenarios), and prevents less skilled users
from getting the best value out of the opportunities available on the Web.

UI-oriented computing (UIC [8]) takes a different perspective and starts from
the UIs of applications we all – programmers and users – are accustomed with
and that are free of developer-oriented abstractions. The research question UIC
poses is if and, if yes, which of the conventional Web engineering tasks can be

achieved if we start from the UIs of applications, instead of from their APIs or
services. The vision is to enable everybody to perform simple integration tasks
directly inside their Web browser, for example, the integration of data extracted
from different Web pages or the automation of repeated navigation actions.

In our prior work [9], we already investigated how to turn UIs into pro-
grammable artifacts and introduced the idea of interactive APIs (iAPIs), that
is, APIs users can interact with via their graphical Web UIs. In [8], we then stud-
ied the specific case of data integration and described an end-to-end solution for
UI-oriented computing consisting of an iAPI annotation format, a graphical edi-
tor for iAPI manipulation and integration, and a suitable runtime environment.

The goal of this paper is to showcase a more extensive case study (the one
developed in the context of the Rapid Mashup Challenge) and to provide insights
into the practical aspects of UI-oriented computing with the current prototype of
our development and runtime environments. In particular, the goal is to highlight
the benefits to both common users (interactive, live development without coding)
and programmers (programmatic UIC via a dedicated JavaScript library).

Next (Sections 2 and 3), we introduce the concept and practice of UI-oriented
computing along with its underlying runtime infrastructure. In Section 4, we then
introduce the scenario we selected to approach the Rapid Mashup Challenge
and how we prepared for the Challenge. In Section 5, we then describe the step-
by-step development of the mashup scenario using the UI-oriented computing
approach. We conclude the paper with a discussion of a set of works that are
related to the proposal we push forward in this paper and a discussion of the
findings, lessons learned and future works.

2 UI-Oriented Computing

The idea of UIC is to propose a new kind of “abstraction”: no abstraction. The
intuition is to turn UI elements into interactive artifacts that, besides their pri-
mary purpose in the page (e.g., rendering data), also serve to access a set of
operations that can be performed on the artifacts (e.g., reusing data). Opera-
tions can be enacted either interactively, for example, by pointing and clicking
elements, choosing options, dragging and dropping them, and similar – all inter-
action modalities that are native to UIs – or programmatically.

The core ingredient, interactive APIs, come as a binomial of a microformat
for the annotation of HTML elements with data structures and operations and
a UIC engine able to interpret the annotations and to run UI-oriented data in-
tegrations. The engine is implemented as a browser extension. A dedicated iAPI
editor injects into the page graphical controls that allow the user to specify data
integration logics interactively. The UIC engine maps them to a set of iAPI-
specific JavaScript functions implementing the respective runtime support. The
library of JavaScript functions can also be programmed directly by programmers,
without the need for interacting with UI elements. To users, the UI elements act
as proxies toward the features of the library. A UI-oriented computing middle-
ware complements the library; both are part of the browser plug-in. It takes care

Web browser

Web server

More news
 Get visible data
 Get full data
 Clone content

Database

Web serviceRuntime
environment

Data source

Programming interface

(a) A Web page with content made
accessible for reuse via an interactive API

(b) A Web server with content made
accessible for reuse via a REST/

SOAP Web service

Interactive API

Rendered HTML markup

Fig. 1. Analogy between visual, interactive APIs (iAPIs) and conventional RESTful or
SOAP Web services: iAPIs are executed inside the client browser and “programmed”
visually and interactively via graphical controls injected into the markup of the page.

of setting up communications among integrated applications (e.g., to load data
dynamically from third-party pages) and of storing interactively defined integra-
tion logics in the browser’s local storage. Programmers with access to the source
code of a page can inject their JavaScript code directly into it. If a potential
source page is not yet annotated to support iAPIs, it is possible to inject suit-
able annotations from the outside and to store them either locally on a remote
Web server for reuse and sharing.

For a better understanding, Figure 1 shows a possible rendering of an iAPI
inside a Web page and also draws the parallelisms with conventional APIs, such
as RESTful or SOAP Web services. In [8], we discuss how the graphical controls
and standard user interactions like drag and drop, point and click, buttons,
and similar can be interpreted as programming intentions; the paper specifically
focuses on the case of data integration, the scenario we will approach in the
Challenge. The paper also provides a detailed description of the iAPI annotation
format used in the implementation described in this work.

3 UI-Oriented Computing Infrastructure

Figure 2 shows the internal architecture of the current prototype, which comes
as a Google Chrome browser extension. It comes with two core elements: a
UIC engine for the execution of UI-oriented data integration logics and an
iAPI editor for visual, interactive development. The UIC engine is split into

The Web

i

Browser window

UIC engine
(background script)

UIC engine
(content script)

Target page P2

<ul
class=
"iapi">
…

<table class="iapi">
…
</table>

Browser extension logo

Graphical iAPI controls

iAPI annotation

iAPI annotations

HTML
augmenter

Loader

HTML 5
messages

loads resources

injects content

Event
handlers

interprets annotations

HTML
augmenter

iapi
JS library

Local
storage

Extension
lifecyle

manager

Annotation parsers

iAPI parser

RSS parserh-card parser
JSON parser

injects controls

manages data

HTML
templ.
HTML
templ.
HTML
templ.

Storage manager

Chrome
messages

manages
icon

RSS

XML

iAPI editor
(injected script)

iAPI parser

react to user interactions

uses

JS
augmenter

injects JavaScript code

Fig. 2. Architecture of the UI-oriented computing environment as browser extension.

two parts: The background script provides core middleware services, such as ex-
tension management (via its icon and pop-up menu), remote resource access,
data parsing, and local storage management. The content script implements the
iapi JavaScript library for programmatic UIC (the implementation is based on
http://toddmotto.com/mastering-the-module-pattern), injects JavaScript
code into the page under development, and provides for the rendering of data
(using the jQuery plug-in). Content and background script communicate via
Chrome system messages. The iAPI editor comes as JavaScript code that is in-
jected into the Web page under development. It parses the annotations of the
iAPIs inside the page, augments them accordingly with graphical controls, and
injects the event handlers necessary to intercept user interactions that can be
turned into JavaScript data integration logics (in turn, injected into the page by
the content script).

As for the features identified in the Call for Participation of the Rapid
Mashup Challenge (http://mashup.inf.usi.ch/challenge/2015/checklist.
html), UI-oriented computing and the current implementation of the prototypi-
cal computing infrastructure support the features summarized in Figure 3. The
essence of UIC is that it aims at the development of applications without the
need to code any interaction with APIs or services of the Deep Web, therefore it

specifically focuses on UI mashups. Hybrid mashups, i.e., mashups that integrate
also application logic and/or data sources, are supported in that application logic
can be accessed by automating and making reusable the interaction with HTML
forms, and data can be extracted from Web pages (we will use both these fea-
tures in the Challenge). The core component types the approach focuses on are
UI components, the iAPIs, and they are integrated on the client-side inside the
Web browser. Some features of the runtime environment, e.g., the persistent
storage of external Web page annotations and the form automation service, are
hosted on a Web server but integrated inside the client browser. The respective
integration logic is UI-based, in line with the vision of UIC, and applications
are short-lining. That is, they are applications running inside the client browser,
and their runtime lifecyle only depends on the lifetime of the respective browser
window: once closed, the application is stopped.

Checklist
Mashup'Features Mashup'Features Mashup'Tool'Features
Mashup.Type: Mashup.Type: Targeted.End7User:
...User.Interface.(UI).mashups ...User.Interface.(UI).mashups ...Non.Programmers
...Hybrid.mashups ...Hybrid.mashups ...Expert.Programmers
Component.Types: Component.Types: Automation.Degree:
...UI.components ...UI.components ...Semi7automation
Runtime.Location: Runtime.Location: ...Manual
...Client7side.only ...Client7side.only Liveness.Level:
Integration.Logic: Integration.Logic: ...Level.4.(Dynamic.Modification)
...UI7based.integration ...UI7based.integration Interaction.Technique:
Instantiation.Lifecycle: Instantiation.Lifecycle: ...WYSIWYG
...Short7living ...Short7living ...Programming.by.Demonstration

...Textual.DSL
Mashup'Tool'Features Online.User.Community:
Targeted.End7User: ...None
...Non.Programmers
...Expert.Programmers
Automation.Degree:
...Semi7automation
...Manual
Liveness.Level:
...Level.4.(Dynamic.Modification)
Interaction.Technique:
...WYSIWYG
...Programming.by.Demonstration
...Textual.DSL
Online.User.Community:
...None

Checklist

Fig. 3. Summary of the features by the pro-
posed UI-oriented computing paradigm.

Regarding the features provided
by the iAPI editor (the “mashup
tool”), it targets end users and aims
to enable them to perform sim-
ple data integration operations in-
teractively inside their own browser.
The JavaScript library for coding
iAPI reuse targets programmers. The
degree of automation is high for
end users (programming instruction
are derived automatically from their
user interactions and configurations),
while coding the JavaScript library is
a manual effort. The liveliness level
of the resulting development experi-
ence is that of dynamic modification,
that is, live development inside the
browser. The interaction technique proposed is WYSIWYG for the users of the
iAPI editor (the results of all integration actions are rendered immediately); the
recording of user interactions with forms for their automation follows a program-
ming by demonstration approach, which is however again visual and interactive,
just like the iAPI editor. Programmers, instead, can rely on a textual DSL im-
plemented as a set of functions provided by the JavaScript library.

4 The Challenge: Scenario and Preparation

Given the set of APIs that can be used in the context of the Rapid Mashup Chal-
lenge (Google Maps, Youtube and the New York Times) and the described goals
and implementation of the UI-oriented computing approach, we chose to partic-
ipate in the Challenge with a data integration scenario. Next, we describe the
target mashup in more details and explain how we prepared for the Challenge.

Translation of

Fig. 4. The target data mashup running in the browser.

4.1 Mashup Scenario

We explain the target mashup by means of its screen shot in Figure 4. The ap-
plication is a data integration that takes latest technology news from the New
York Times (http://www.nytimes.com/) and the Discover Magazine (http://
discovermagazine.com/) – news are represented by their title, author and sum-
mary – and also provides a translation of the summary from English to Italian
using the Yandex Translation API (https://tech.yandex.com/translate/).
The two data sources are integrated via a common merge/union operation, while
the translation requires iterating over each news article and invoking the trans-
lation Web service for each summary. The result is rendered inside the target
page of the developer by means of a common HTML table.

Empty target iAPI

Annotation of empty target iAPI in source HTML markup

Fig. 5. The empty target mashup running in the browser.

4.2 Preparation of Challenge

Mashing up the two data sources and the translation API in the scenario with
the proposed UIC paradigm requires some preparation. In general:

1. Implementing suitable UIs for all resources. For data and functionality to be
extracted from Web pages, the UI is already there. For data feeds, services
or APIs, this requires new simple Web front-ends that provide access to the
resources’ features, e.g., tables visualizing data from feeds or forms allowing
users to operate a remote service or API.

2. Annotating all UIs for reuse. For existing Web pages this requires inject-
ing annotations into the markup of the pages, e.g., using the interactive
iAPI annotator (developed in parallel to the core UI-oriented computing in-
frastructure) that allows one to inject iAPI annotations into a page at the
client-side at page loading time. Newly developed front-ends can directly be
annotated in their source markup.

Annotated interactive API The browser extension detects the presence of the iAPI

Fig. 6. The annotated Discover Magazine with injected graphical controls.

Specifically, this means that we need to annotate the Discover Magazine to
enable the extraction of news and to implement an ad-hoc HTML form providing
access to the translation API. In addition, we also need to implement an empty
target page that will host the integrated data and translations. We do not an-
notate the New York Times in advance, since we also would like to demonstrate
the use of the interactive iAPI annotator during the Challenge. We describe the
preparation of the other parts next, starting from the target page.

The screen shot in Figure 5 illustrates the implementations of the target
page. The top part is the rendering of the page inside the browser; the lower
part reports the source HTML markup of the page. As can be seen in the code,
the page does not have any own data to be rendered, and the gray shaded div

element is marked as an interactive API by the annotation class="h-iapi".
This simple annotation is enough to turn the div into a UI element users can
interact with. In our case, this is the UI element that will host the integrated
data. Nothing more is needed to implement the target page.

Figure 6, instead, illustrates the annotated start page of the Discover Mag-
azine. The annotation is achieved by means of the iAPI annotator tool, which

Standard HTML form with iAPI
annotations aiding the recording
of user interactions

Fig. 7. The auxiliary HTML form developed on top of the Yandex translation API to
enable UI-oriented reuse.

allows one to annotate interactively a page and to inject annotations on the fly
each time the annotated page is accessed. This means that the annotation of
the magazine does not require us to download the page and to store it locally;
instead only the annotations are stored in a dedicated Web-accessible repository
and reused at each access to the page. The specific annotations used to extract
news from this page are (used in the class attribute of HTML elements):

– h-iapi: identifies the area from which to extract content;
– e-data:News: categorizes the identified iAPI as a data source and labels it

as “News;”
– e-item:Article: identifies the DOM nodes that host individual news items

and assigns the label “Article” to them;
– p-attr:Title, p-attr:Author, p-attr:Summary: identify the different com-

ponents that make up a news item (the attributes of the item) and labels
them as “Title”, “Author” and “Summary.”

The same annotation structure will be used during the Challenge to anno-
tated the New York Times news items. This allows us to automatically match
items at data integration time without the need for transforming input data
structures and to save time during the live demonstration.

Finally, Figure 7 shows the HTML form developed on top of the Yandex
Translation API (a RESTful Web service). Since we do not directly want to

interact with the API itself, the form is needed to make its functionality avail-
able through the Surface Web. The form comes with three input fields (text to
translate and the input/output languages) that allow the user to translate text
by invoking the translation API in the background on behalf of the user. The
result is shown on another page after hitting the Translate button. In the next
Section, we will see how this form can be programmed by example and turned
into a piece of reusable business logic for the development of the target mashup.

5 The Challenge: Live Mashup Development

Given the empty target page, the annotated Discover Magazine and the HTML
form that provides interactive access to the translation API, we are ready for
the development of the mashup to be showcased in the Challenge. The available
time to showcase the UI-oriented computing approach and to develop the mashup
outlined above is 10 minutes. We structure the demo into the following steps:

1. Annotation of the New York Times technology news
2. Fetching of news from the New York Times
3. Fetching of and merging with news from the Discover Magazine
4. Rendering of integrated data suing a table representation
5. Programmatic addition of a new column to host the translations
6. Recording of user interactions with the translation form for reuse
7. Programmatic iteration over news and reuse of recorded interactions
8. Rendering of integrated dataset

Next, we describe the demo showcased during the Mashup Challenge step by
step and provide the necessary explanations with the help of screen shots.

Figure 8 illustrates the annotation process for the New York Times tech-
nology news (¶). We specifically focus on the “More news” area, which is well
structured and allows us to easily annotate and extract news items. Clicking on
the “i” icon with the pencil in the top right corner of the browser opens the
overlay window shown in the lower right part of the screen shot. This window
serves as control console for the annotation process. The process is as follows:
First, the user identifies the HTML area of interest (this is highlighted in the
left-hand side of the screen shot by the rectangular box surrounding the news
to be extracted). Then, the user identifies the DOM element that hosts an indi-
vidual news article (represented by the green-shaded area in the top part of the
highlighted area inside the page). The annotator tool automatically identifies all
DOM elements with similar structure. Next, the user identifies the individual
attributes of each news item by selecting them inside one of the identified news
items. Once all attributes are identified, the control panel allows the user to la-
bel the data source (“News”), the items (“Article”) and the attributes (“Title”,
“Author”, “Summary”). Finalizing the annotation process saves the annotations
using a dedicated Web service and injects them into the page. The newly created
iAPI is ready for data extraction.

Control panel for the annotation of identified HTML elements

Selected HTML element of the DOM tree

Fig. 8. Interactive annotation of the New York Times Technology News site.

The reuse of the identified news articles (·) is now supported via a simple
drag and drop action. Figure 9 illustrates the process. When the user moves the
mouse over the area marked as iAPI inside the New York Times page, the black
graphical controls pop up and allow him/her to pick the data by dragging and
dropping the “Get data” menu entry of from the injected menu. Since the target
iAPI is still empty, this process fills the iAPI with the extracted data.

The next step of the data integration process (¸) requires the user to repeat
a similar drag and drop action using the Discover Magazine, as illustrated in
Figure 10. The key difference from the first action is that now at drag release
time the target iAPI allows the user to specify how to disambiguate his/her
action (in fact, multiple interpretations of a drop action on an iAPI that already
contains data are possible, e.g., join, merge, substitute, etc.). In our scenario,

Drag and drop action
from one page to another

Fig. 9. Dragging and dropping news articles from the New York Times into the target
page fills the target iAPI with extracted data and applies a standard visualization
format, e.g., a list or table layout.

Drag and drop action + selection of data integration operation

Fig. 10. Dragging and dropping news articles from the Discover Magazine into the
target page causes the target iAPI to ask the user which action he/she wants to perform,
given that there are already data in the iAPI.

the user chooses to “merge” the new data with the one already fetched from the
New York Times, specifically using a “full union” operator (there is no need to
eliminate possible duplicates, as the two data sources are too different and it is
unlikely that there will be two articles with exactly the same title, author and
summary). A final selection of the table layout from the injected menu of the
target iAPI reformats the data fetched from the two data sources as illustrated
in the top part of Figure 11 (¹).

JavaScript instruction adding a new column to the identified iAPI

The new, empty column added to the table

Fig. 11. Programmatic extension of the table with a new column for the translation

To showcase how programmers can leverage on the proposed UI-oriented
computing paradigm, we now switch off the interactive iAPI editor that injects
graphical controls using the pop up menu that opens when clicking on the ex-

tensions logo in the top right of the browser window and turn on the JavaScript
console of the browser. This allows the skilled programmer to input UI-oriented
programming instructions in JavaScript and to modify the mashup rendered in
the browser window on the fly.

The screen shot in Figure 11 illustrates the first step of the manual de-
velopment process, i.e., the expansion of the table in the browser with a new
column able to host the translations of the summaries (º). The JavaScript con-
sole reports the respective programming instruction. The selector $("#1") is
the jQuery (https://jquery.com/) selector that uniquely identifies the target
iAPI inside the target page (see Figure 5). The function addAttribute injects
the new column into the iAPI, both into its in-memory data object and its
graphical rendering inside the page.

Exemplary inputs

Recording control panel

Selection of variable input fields

Fig. 12. Recording user interactions with the HTML form providing access to the
Yandex translation service. The controls at the right allow the user to start/stop the
recording and to identify variable inputs to be filled at invocation time.

The next step is the translation of the summaries. Doing so requires first
recording an exemplary interaction with the translation HTML form we prepared
before the Challenge (»). This process is illustrated in Figure 12. The recording
control panel allows the user to start and stop the recording and to mark input

Re-rendering of iAPI
Iteration and invocation of form fill service

Newly added column
filled with translations

Fig. 13. Iteration over all articles and invocation of the translation form for each
summary with final re-rendering of the target iAPI.

fields as either constants (the values provided as examples during the recording
will also be used when replaying the recorded interactions) or variables (the
values of these can be provided as dynamic inputs each time recorded interactions
are replayed). A click on the Translate button invokes the Yandex translation
service and renders the translated text. This latter can now be indicated as
output of the recorded interaction process. A click on the Stop button terminates
the recording and opens a pop-up window that provides the user with a simple
script that can be used to invoke the recorded user interactions. This script
is shown in Figure 13 in the JavaScript console (the string in red) and used
inside an iapi.each iterator that scans all news articles in the table and allows
the invocation of the iapi.fill Form function that mimics the filling of the
translation form for each summary found in the table (¼). The final re-render
instruction in the JavaScript console renders the retrieved translations (½), and
closing the console brings us to the final mashup already shown in Figure 4.

The eight described steps showcase how the UI-oriented computing paradigm
has been implemented so far for both users and programmers. The video avail-
able at http://youtu.be/yEtjIO3oMsI shows the screen cast of the demonstra-
tion and provides better insight into the subjective experience of both types of
developers.

6 Related Work

The key idea of UI-oriented computing is to interpret standard UI elements –
like the ones already in use for the implementation of Web UIs – as constructs
to express generic computation logics. Traditionally, computation logic for the
Web is expressed either via programming languages, such as Java, Python, PHP,
JavaScript, and similar, or via model-driven development formalisms [6]. Orthog-
onally to these paradigms, Web services [2, 12] have emerged over the last decade
as one of the most prominent Web technologies that influenced integration on
the Web in general. Their focus, however, is on the application logic layer, not
the presentation layer (the UIs) of applications.

Research on the reuse of UIs has mostly focused on the identification and def-
inition of UI-centric component technologies, such as standard W3C widgets [14]
and Java portlets [13] or proprietary formats [15], and the development of suit-
able integration environments [5, 7]. The former essentially apply the traditional
programmer perspective to UIs and still require integration at the application
logic layer, e.g., via Java or JavaScript. The latter generally follow a black-box
approach in the reuse of UIs: components are small, stand-alone applications
and they are either included or excluded in a composition/workspace. The Web
augmentation approach by Diaz et al. [11] is a partial exception: it allows for a
fine-grained reuse of data among websites, starting from their UIs. The approach
extracts data elements of limited size (individual labels or small fragments) with-
out requiring additional annotations; on the downside, the approach still requires
programming knowledge. None of these UI-centric approaches are however able
to implement the data integration scenario approached in this paper.

Mashups [10] are the approach that comes closest to the described scenario;
in fact, the discussed data integration can be seen as a mashup, in particular, a
data mashup. It could, for instance, be approached with the help of Yahoo! Pipes,
JackBe Presto, or similar data mashup tools. Pipes (http://pipes.yahoo.com),
for example, proposes a model-driven paradigm that starts from the assumption
that the data to be integrated are available as RSS/Atom feeds or XML/JSON
resources. The two lists of news articles integrated in our example scenario could
thus be merged by selecting and configuring dedicated built-in constructs; the
translation of the summaries would however require some manual development
of a back-end Web services compatible with Yahoo! Pipes data passing logic (in
complete lists, not individual items). The result would then be accessible as RSS
feed via Yahoo! Pipes. Although the described logic is very similar to the one
of our scenario, it still lacks the rendering and embedding of the result into the
user’s website, a task that requires again considerable manual development.

To aid both the extraction of content from HTML markup and the transpar-
ent invocation of backend Web services, this paper proposes the use of explicit
annotations, similar to microformats (http://microformats.org). If these are
not provided natively inside of the markup of a source page (as in the case of
the form we annotated for the reuse of the RESTful translation service), the
iAPI Annotator provides the necessary means to attach them from the outside
to third-party pages (as in the case of the New York Times). The approach does
not yet focus on the annotation of data with semantics, as proposed by the Se-
mantic Web initiative [3]. The goal of the annotations in this work is to provide
immediate functional benefits to the consumers of data: annotations in fact allow
the injection of graphical controls that enable the visual UIC paradigm.

7 Discussion and Future Work

The demo showcased in the context of the Rapid Mashup Challenge and de-
scribed in this paper is the development of a simple data mashup following a
UI-oriented computing approach. The idea of the approach is to leverage on the
graphical UIs of applications as programming artifacts, to extend them with ad-
ditional, programming-specific controls, and to allow developers (both common
users and programmers) to express data integration operations interactively in-
side the browser without having to write any line of program code. The idea of
UI-oriented computing and interactive APIs is still in its infancy. Yet, the demo –
although apparently simple – showed a data integration scenario that is not triv-
ial in general but that was solved in a fashion that does not require programming
skills (the first part of the demo) or manually programming low-level interactions
with Web services or data extractors (second part of the demo). The benefits of
the approach therefore span from common users to skilled programmers.

There are however still some limitations that come with the showcased im-
plementation of the UI-oriented computing infrastructure and the iAPI editor:

– The current implementation of the editor does not yet support the visual
specification of iterators and the reuse of recorded user interactions for the
automation of forms. We turned this shortcoming in the demo into an ad-
vantage and used it to also showcase how programmers can leverage on the
proposed paradigm. This was possible thanks to the ready implementation
of the respective functionality in the iapi JavaScript library. The next step
is however making the these features available also to regular users through
the interactive iAPI editor.

– The interaction paradigm proposed in this paper and the demonstration to
derive programming intentions from user interactions is a best-effort devel-
opment. We did not yet have time to study different types of interpretations
(e.g., whether a drag and drop action better represents a data fetching ac-
tion or a layout action) or different interaction paradigms (e.g., without drag
and drop actions, with contextual menus that can be opened with a right-
click, voice interactions, etc.). However, the current implementation of the

described software infrastructure already supports the independent develop-
ment of different editors on top of the runtime environment, which will ease
these kinds of investigations in future developments.

– The annotation format proposed so far to equip UIs with interactive pro-
gramming capabilities, the interactive APIs, does not leverage on any form of
semantic knowledge. The format is inspired by the microformats 2 proposal
(http://microformats.org/) and provides syntactic cues for the runtime
environment only. We are aware that especially targeting end users without
specific programming skills may require better assistance mechanism, able
to provide them with as much aid as possible. Doing so may require using
also semantic annotations, e.g., in order to automate some data integration
tasks (most notably, data disambiguations).

– The UI-oriented computing features supported so far are mostly focused on
data integration tasks, with the exception of the user interaction recorder
that allows interpreting standard HTML forms as reusable pieces of busi-
ness logic. The idea of UI-oriented computing is however much broader and
comprises also use cases for cloning complete UI widgets (markup, styles
and functionality), automating short-living and long-living processes (e.g.,
the parametric execution of repeated navigation actions), and the establish-
ment of communications among integrated widgets or UI elements. These
advanced use cases are part of our future work.

As these considerations point out, UI-oriented computing is not a pure engi-
neering problem only. Identifying the right set of operations and use cases that
make sense in a UI-only context, understanding how to best interpret user in-
tentions, designing effective interaction paradigms, etc. are all HCI challenges
that need good answers on their own. Of course, the engineering of the necessary
software support inside and outside of the browser requires profound software
engineering and Web development skills. The challenge of the proposed idea is
finding the right answers in both areas and to bring them together profitably.
The final vision of iAPIs and UI-oriented computing is proposing an alternative
to the current interpretation that programming is only for skilled programmers
that can only be achieved by means of abstractions and constructs that only
programmers are familiar with and can master. That is, the vision is to make
“programming” accessible to an increasingly wider area of “developers.”

What makes us confident about the potential success of UI-oriented comput-
ing is that, although it’s final vision targets non-programmers, it also immedi-
ately provides tangible benefits the programmers: The deployment of iAPIs is
contextual to the deployment of their host application, and they do not require
separate deployment or maintenance (like, for instance, the RSS feeds published
by the New York Times in parallel to the main Web site). The documentation
of iAPIs comes for free; the UI and the injected graphical controls already tell
everything about them. The retrieval of iAPIs does not ask for new infrastruc-
ture or query paradigms; since iAPIs are an integral part of the Surface Web, it
is enough to query for desired data or functionality via common Web search; if
Google indexes a Web site, its iAPIs are indexed too.

The iAPI microformat is maintained via the W3C Interactive APIs Commu-
nity Group (http://www.w3.org/community/interative-apis), the browser
extension on https://github.com/floriandanielit/interactive-apis.

References

1. A. Abdelnur and S. Hepper. Java Portlet Specification, Version 1.0. Technical
Report JSR 168, Sun Microsystems, Inc., http://download.oracle.com/otndocs/
jcp/PORTLET_1.0-FR-SPEC-G-F/, October 2003.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Ar-
chitectures, and Applications. Springer, 2003.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
pages 34–43, May 2001.

4. M. Caceres. Packaged web apps (widgets) - packaging and xml configuration (sec-
ond edition). W3C Recommendation, 2012.

5. C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo, and C. Francalanci.
DashMash: A Mashup Environment for End User Development. In ICWE 2011,
pages 152–166, 2011.

6. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. De-
signing Data-Intensive Web Applications. Morgan Kauffmann, 2002.

7. O. Chudnovskyy, T. Nestler, M. Gaedke, F. Daniel, J. I. Fernández-Villamor, V. I.
Chepegin, J. A. Fornas, S. Wilson, C. Kögler, and H. Chang. End-user-oriented
telco mashups: the OMELETTE approach. In WWW 2012 (Companion Volume),
pages 235–238, 2012.

8. F. Daniel. Live, Personal Data Integration through UI-Oriented Computing. In
ICWE 2015, pages 479–497, 2015.

9. F. Daniel and A. Furlan. The Interactive API (iAPI). In ComposableWeb 2013
(ICWE 2013 Workshops), pages 3–15. Springer, July 2013.

10. F. Daniel and M. Matera. Mashups: Concepts, Models and Architectures. Springer,
2014.

11. O. Dı́az, C. Arellano, and M. Azanza. A Language for End-user Web Augmenta-
tion: Caring for Producers and Consumers Alike. ACM Trans. Web, 7(2):9:1–9:51,
May 2013.

12. R. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. Ph.d. dissertation, University of California, Irvine, 2007.

13. S. Hepper. Java Portlet Specification, Version 2.0, Early Draft. Technical Report
JSR 286, IBM Corp., http://download.oracle.com/otndocs/jcp/portlet-2.

0-edr-oth-JSpec/, July 2006.
14. Web Application Working Group. Widgets Family of Specifications. Technical

report, W3C, http://www.w3.org/2008/webapps/wiki/WidgetSpecs, May 2012.
15. J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera. A

Framework for Rapid Integration of Presentation Components. In WWW 2007,
pages 923–932, 2007.

