
A Scientific Resource Space Management System

Cristhian Parra1, Marcos Baez1, Florian Daniel1, Fabio Casati1, Maurizio Marchese1,
and Luca Cernuzzi2

1 University of Trento, Dipartimento di Ingegneria e Scienza dell’Informazione

Via Sommarive 14, 38123 Povo (TN), Italy
{parra,baez,daniel,casati,marchese}@disi.unitn.it

2 Universidad Católica “Nuestra Señora de la Asunción”,
Departamento de Electrónica e Informática

Tte. Cantalupi y Tte. Villalón. Barrio Santa Ana. Asunción, Paraguay
lcernuzz@uca.edu.py

Abstract. As the web continues to change the way we produce and dissemi-
nate scientific knowledge, traditional digital libraries are confronted with the
challenge of transcending their boundaries to remain compatible with a world
where the whole Web in itself is the source of scientific knowledge. This paper
discusses a resource-oriented approach for the management and interaction of
scientific services as a way to face this challenge. Our approach consists in
building a general-purpose, extensible layer for accessing any resource that has
a URI and is accessible on the Web, along with appropriate extensions specific
to the scientific domain. We name the class of systems that have this function-
ality Scientific Resource Space Management Systems (sRSMS), since they are
the resource analogous to data space management systems known in literature.

Keywords: Resource Space Management System, Scientific RSMS, Scientific
Resources, Karaku, ResMan

1 Introduction

Over the last decade, the increasing outburst of services available on the Web has
pushed forward new ways of producing and disseminating knowledge online. For
instance, in the context of scientific knowledge, today’s researchers have access to an
overwhelming space of scientific publications thanks to instruments that range from
traditional digital libraries (such as SpringerLink) to specialized search engines (such
as GoogleScholar) and metadata services (such as DBLP). In addition to these rather
“traditional” means of knowledge dissemination, today’s Web 2.0 is characterized by
instruments that enable the early sharing of knowledge (such as wikis, blogs or per-
sonal web sites). These kinds of contributions are not peer-reviewed, but they might
still have a huge impact on the scientific community depending on the reputation of
their authors (think, for instance, of the so-called technology evangelists). Further-
more, there is an increasing interest in online repositories where scientists can pub-
lish, share and discuss their contributions, emulating the power and typical features

of social applications. Scientists might collaboratively enhance teaching material like
slides or books and even share their data and experiments (e.g., myExperiment.org).

These latter, novel kinds of contributions, however, are typically not considered
first-class citizens in scientific knowledge dissemination. Yet, we argue that in many
cases they provide significant contributions to science as a complement of traditional
research papers. As such, they too need to be properly indexed and made available to
the public for search and access, a task that is certainly not easy. The biggest hurdle
we need to clear is the heterogeneity of these contributions. In fact, unlike in digital
libraries where there exist efforts for the definition of standards (e.g., interfaces,
languages, protocols) to access and query online repositories, wikis, blogs or social
applications typically do not feature similar interfaces. Rather, they follow the recent
trend of exposing software interfaces on the Web, such as SOAP or RESTful web
services, which can be used programmatically to interact with them. Unfortunately,
there are no standards for the design of these kinds of web-accessible APIs and, as a
consequence, there is no single instrument to search and access these heterogeneous
sources in a uniform fashion.

Enabling users to search these types of scientific contributions therefore requires a
novel approach, especially as for what regards the logic of how to access individual
sources (multiple technologies might be involved in a single query) and of how to
abstract them to the user. The goal of this paper is to extend the reach of services,
such as those supported by traditional digital libraries, beyond their typical bounda-
ries. To do so, we leverage some ideas taken from dataspace management [1] and
develop what we call a Scientific Resource Space Management System (sRSMS),
which will allow us to access a variety of scientific resources homogeneously, ad-
dressing the problem of heterogeneity and interoperability among scientific artifact
sources (not only digital libraries) in a novel fashion and enabling the easy develop-
ment of value-adding applications on top.

In essence, our sRSMS provides homogeneous programmatic access to scientific
resources by (i) abstracting the various kinds of scientific knowledge into a uniform
conceptual model; (ii) abstracting the operations that the services support, providing
access to scientific knowledge (from simply accessing paper data/metadata, to ex-
tracting and tagging content, crawling citations, submitting for review, etc…); and
(iii) by hiding the tedious problem of accessing heterogeneous platforms, which very
often are not even available for programmatic access but are only designed for web
browser access (e.g., SpringerLink, Blogspot, or wikis).

Motivating scenario. The idea of sRSMS was born in the EU project Liquidpub1,
which aims at developing concepts, models, metrics, and tools for an efficient (for
people), effective (for science), and sustainable (for publishers and the community)
way of creating, disseminating, evaluating, and consuming scientific knowledge. For
this purpose, several tools are under development, providing advanced features on
top of what we call the scientific resource space. Among them, we aim, for instance,
at developing so-called Liquid Journals (LJs), i.e., personal collections of scientific
resources (the journals) that evolve continuously over time, following the dynamics
of the resources it is built on (the liquid aspect). For this purpose, it is necessary to

1 http://project.liquidpub.org

query both traditional, peer-reviewed journals and conferences, and the novel kinds
of contributions discussed above. In Figure 1 we illustrate the idea that drives this
paper: for the purpose of fast prototyping and early validation of the LJ idea, we
started implementing the LJ Application as a monolithic block, which indeed allowed
us to achieve the expected results in short time. However, we also recognized that
there is something more “under the hood”, which deserves its own attention, espe-
cially in light of other advanced features to be implemented: the abstraction and
management of the actual scientific resources.

Figure 1. From ad-hoc access of scientific resources to a dedicated Scientific Resource Space
Management System

Providing these features in a way that is as general and widely applicable as possi-
ble and, at the same time, as useful and specific (to the scientific domain) as possible
is a non-trivial task. There are several challenges that need to be answered: Which
are the best concepts and abstractions? Which features are general enough to be re-
used in practice? What does our resource space look like? How do we deal with the
heterogeneity of resources? How do we query the resource space? And so on.

Contributions. Building on this scenario, in this paper we provide the following
contributions:
• We introduce the idea of Resource Space Management System (RSMS) and its

scientific domain counterpart (sRSMS), by describing the ideas and requirements
that drive their development.

• We define our scientific resource space and show how to abstract scientific re-
sources of various natures along with their operations.

• We provide some minor details about the implementation of our sRSMS, which
is able to provide homogenous programmatic access to resources and web serv-
ices, regardless of how they are implemented.

• We show how our sRSMS can be leveraged to ease the development of the Liq-
uid Journal Application described above.

• Finally, in doing so, we aim at simplicity, flexibility and collaborative extensi-
bility. Our sRSMS facilitates extensibility by allowing the community of develop-
ers to just register services that interface with systems or scientific resources
available in the web and that may be hosted also by other parties (there is no need
for plugging code in). Further details about this work can be found in the technical
report version available online [10].
Next, we discuss some works that are related to the idea of sRSMS. In Section 3,

we derive a set of general requirements for resource space management, which we
then use in Section 4 to define our idea of scientific resource space management
system. In Section 5 we show how such can be applied in the context of the Liquid
Journal case study, and then we conclude the paper.

2 Related Work

Our idea of resource space management system stems from the area of dataspaces,
which extends concepts from traditional database management toward heterogeneous
data sources [1][2]. We extend the principles of dataspaces to a space of scientific
resources, where resources also have their own behaviors (i.e., they have actions that
can be used to interact with them), and we aim to model scientific entities in this
space of resources as first class citizens. We differ from dataspaces in that we not
only focus on the search problem, but we also provide abstractions for operating with
scientific entities.

If we look at the Web, we see that electronic publishing, digital libraries, elec-
tronic proceedings, on-line patents repositories and more recently blogs and scientific
news streaming are rapidly expanding the amount of available scientific/scholarly
digital content. Search engines (like Google, Yahoo, Ask.com, and so on) give users
a first, shallow (but easy to use) level of integration through keyword-based search.
The introduction of smart ranking algorithms, such as Google’s PageRank™, made
this type of search even more effective and fast. However, keyword-based search has
some heavy limitations, such as: document-level granularity, lack of integration
across results, lack of context for keywords, difficulty in expressing complex queries.
The problem is that general-purpose search engines lack the necessary domain con-
cepts and interaction capabilities to properly handle scientific resources.

The Search Computing (SeCo) project aims at answering complex queries by au-
tomatically deriving from the query input a suitable query execution plan, which can
be used to orchestrate the interaction with individual search services [3]. The goal
SeCo is to enable so-called multi-domain search, i.e., the search of deep web data by
accessing multiple domain-specific search services in a coordinated fashion. In our
sRSMS (i) we do not address only search services, but also single scientific resources
(e.g. an individual Google Doc); (ii) we aim to handle scientific resources as full-
fledged services with their own interaction logic; and (iii) we try to provide the re-
sources’ features to upper layers in the software stack in an abstract form.

Our research also considers the problem of operating on sources. Thus, a relevant
area is that of services integration and interoperability, where research on service

compatibility [4] and recently on models and frameworks for service integration,
replaceability and interoperability has produced results this paper build on [5][6].

Besides general-purpose search engines, there are many open or commercial digi-
tal libraries that specifically focus on the scientific knowledge domain, such as Sco-
pus, Web of Knowledge, CiteSeer, DBLP, or GoogleScholar, which typically offer a
much better and more flexible access to their content. They can answer queries that
are more complex than simple keyword queries. However, they suffer from a much
narrower coverage, and currently there is very little – if any – integration between
different services. This means, for example, that DBLP or CiteSeer cannot answer
any query that requires gathering information from each other or from related digital
libraries.

One important thread of work is related to the definition of standards for metadata
for scientific/scholarly content in order to support this kind of integration. In this line,
some relevant works to follow are the Dublin Core Metadata Initiative (DCMI), the
Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH), the Online
Information Exchange (ONIX) and the Digital Object Identifier (DOI®). All these
protocols, however, are focused on a top-down approach for supporting content inte-
roperability (metadata from repositories), which is only one angle of the problem we
are facing in our approach. More specifically, it misses on recent bottom-up trends of
exposing scientific artifacts (not only papers) via software interfaces on the Web,
which can be used to programmatically interact with them.

3 Resource Space Management: concepts and requirements

In this section, we leverage on the ideas pushed forward in [1], where the authors
introduce the concept of Dataspace Management and DataSpace Support Platform
(DSSP) in the context of data management, and we describe our analogies in the
context of resource management.

Managing a space of resources means bringing together inside one homogeneous
environment a variety of heterogeneous kinds of resources and providing suitable
means to access and use resources and to define and maintain all necessary relation-
ships among the resources. In short, a resource can be any artifact we can refer to by
a URI and that is accessible over the Web. This notion is very general and captures
the requirement of supporting any arbitrary information such as simple web pages,
online documents, web services, feeds, and so on. That is, resources might be simple
sources of data or content, but they might also be as complex as SOAP or RESTful
web services with their very own interaction logic.

A resource space can then be defined as a set of resources and relationships,
where the set of resources limits the space to a manageable number of resources, and
the relationships express how the resources in the space are interrelated. Theoreti-
cally, the biggest resource space with our definition of resource is the Web itself, but,
of course, we do not aim at providing a new way of managing the Web. Instead, we
think that only by setting suitable boundaries for the resources to be considered, i.e.,
by limiting the resource space, it is also possible to provide value-adding, novel func-

tionalities that justify the development of a dedicated RSMS. In this paper we focus
our attention to the specific domain of scientific knowledge.

Given a resource space, resource space management means providing, on top of
the resource space, functionalities that allow one (either programmatically or via
human interaction) to organize the space and to handle its resources, making the most
of their individual capabilities. Such functionalities are to be enabled by the RSMS,
of which we specifically identify the following as basic services (adapted from [1]):
• Cataloging of resources and of the content and services that are accessible

through those resources: This is the first and foremost service of a RSMS. The
catalog is the instrument that defines the actual resource space. Cataloging re-
sources therefore means (i) defining the nature and capabilities or resources, (ii)
specifying and maintaining relationships among the resources, (iii) storing and in-
dexing the resources in the catalog, and (iv) managing the necessary metadata to
configure the resources in the resource space for access and interaction.

• Querying/Searching the resource space: Once a resource space is defined, in
order to provide access to its resources it must be possible to query or search for
resources. With querying we refer to exactly answering structured queries over the
resource space, analogously to how we query a relational database. With search-
ing we mean search in terms of keyword-based, unstructured queries, analogously
to how we query the Web.

• Supporting complex workflows over resources in the resource space: Some
maintenance operations or application features on top of the RSMS might require
the execution of coordinated actions over resources in the space. Such feature
could be, for instance, achieved by supporting workflows of operations over the
resources or compositions of web service interactions.

• Monitoring and handling events: As resources are not static and evolve over
time – especially on the Web where not only contents but also programmatic inter-
faces and, hence, the features provided by the resources typically change at a fast
pace – it is important to keep the local description of the resources in the catalog
up to date. Depending on the nature of the resources, it might be possible to moni-
tor their evolution (e.g., via events emitted by the resources) or it might be neces-
sary to query them for updates.

• Analyzing resources and the resource space: Managing a resource space means
understanding the health of the space and taking actions in case of problems. Do-
ing so requires the RSMS to provide basic analysis features that inform about the
state of the space. The supported analysis features may vary depending on the type
of resource and resource space supported by the system.

• Discovering of resources in the resource space: Next to managing the dynamics of
the resources in a resource space, it is also necessary to manage the dynamics of
the resource space itself, since on the Web continuously new resources are created
and others are destroyed. It is therefore also important to be able to discover (e.g.,
by crawling the Web) those new resources that satisfy the membership require-
ments of the resource space and to add them to the space, allowing the space to
grow autonomously.
Ideally, a RSMS supports all of the above features, plus additional ones that vary

depending on the specific application domain they focus on. In practice, already a

subset of the above features may provide substantial help to its users, especially if –
in addition to the pure management of resources – the system also provides effective
instruments that allow the user to handle resources and to interact with them at the
level of abstraction that best suits the chosen domain. In the next section, we show
how this additional layer could look like if we focus on the scientific knowledge
domain; then we explain how resource management in the resulting sRSMS is sup-
ported by our underlying RSMS.

4 Managing and Accessing Scientific Resources

A generic RSMS as discussed in section 3 allows us to interpret the Web as a re-
source space in which all URI-accessible artifacts are resources. In this paper, the
aim is to go beyond the mere technology abstraction and provide also suitable do-
main concepts that simplifies the access of and interaction with resources, and repre-
sents them in a way that can be understood by non-IT users and domain experts.
Doing so will allow us to widen the accessibility of our sRSMS from IT experts to
average web users. In this section, we show how we achieve this in our sRSMS
called Karaku2. Then we describe how we tackle the problem of accessing the actual
resources by the means of our base architectural layer called ResMan3 [7].

4.1 The Scientific Resource Space (sRSMS)

In the context of scientific knowledge, a scientific resource is any resource that rep-
resents an important concept in the domain of scientific knowledge dissemination.
Examples are documents (e.g., a Google Doc or a blog entry), experiments results
and their datasets, metadata information like DBLP’s records, authors themselves
and so on. A scientific resource space contains all these scientific resources.

To support and push forward a group of innovative scientific services, first we
need to speak the same language used in the domain of scientific research. The first
step consists then in defining a comprehensive conceptual model that supports all
possible entities and relationships of the specific domain and that will be common for
all services built upon this layer. Many initiatives are being done to come up with
such a model (e.g. OAI-PMH) but none of them have had enough impact as to be-
come the industry “de facto” standard. We therefore introduce our own model, which
is tailored to the specific features we want to support in the sRSMS.

Karaku Conceptual Model. The scientific resource space is modeled by means
of three basic constructs (very similar to the well-known Entity-Relationship nota-
tion):

2 http://project.liquidpub.org/karaku/. Karaku is a Guaraní word traditionally used to refer to

the core of an issue. It was chosen as the name of this project because it is the core element
in the overall Liquidpub project platform.

3 http://project.liquidpub.org/resman

• Entities define the domain concepts we want to manage in the sRSMS. Entities
are the domain-specific representation of the resources available on the Web and,
as such, can be characterized by means of a name, properties, and possible opera-
tions (i.e., actions) that can be performed on the resource.

• Relations (or relationships) define connections between two different entities
(e.g., cited by, coauthored with, it is affiliated to). Relations are at the basis of
query evaluation and allow the query engine to relate different entities.

• Annotations represent extended information attached to both relations and entities
(e.g., comments, specialized attributes like tags). Annotations can be used to im-
prove search performance and to specify how to bind entities to actual concepts.
The former constructs allow us to model the scientific resource space. Via annota-

tions, it is possible to extend the scientific entities by adding more attributes and
technical details. Indeed, we can think of the space of scientific resources as con-
glomeration of resources being tagged with different “types”, relationships, and al-
lowed actions. Defining such a classification allows the system to manage resources
more easily while also providing guidelines for further specializations.

Figure 2. Conceptual model of the scientific research space

Figure 2 shows the model of the scientific resource space supported by Karaku.
The figure does not render annotations, which we skip for presentation purposes. The
entities we want to manage are:
i) Scientific contributions (SC): these represent the actual scientific knowledge

artifacts, such as papers, reviews, blog entries, experiments, etc. The scientific
contributions are the main entity around which we define the other four entities.

ii) Person: scientific contributions are produced by people, which we represent by
means of the Person entity. Depending on their involvement in the knowledge
production process, people may play different roles from the perspective of the
scientific contribution, which we represent by means of suitable relationships.

iii) Communities: refer to groups of people working in a same field or area of re-
search. Knowledge about communities and the involvement of people in them is
particularly interesting to assess the “quality” or impact of a researcher within his
community. Communities typically evolve frequently over time.

iv) Collections: are predefined aggregations of both people (e.g., institutions) and
scientific contributions (e.g., conference proceedings). Typically, collections are
persistent in time or change only at a very slow pace.

v) Events: events are occasions taking place at a particular time (e.g. conferences,
meetings, workshops), bringing together people for discussion and publication of
scientific results.

The essence of this model is not just the model in itself (although we found this
simple model fits our needs fairly well, it is possible to argue that others are as good)
but the fact that it can be extended or even replaced by another in the same sRSMS
architecture (by means of the introduced modeling constructs), offering in this way
an opportunity to explore the concepts that form the foundations of scientific activity.

Furthermore, any domain can develop its own RSMS based on the same high-
level constructs and the basic access layer that is discussed in this paper. The scien-
tific community could even develop a new scientific RSMS, much more complex and
expressive than the one we describe in this paper.

Karaku Architecture. Given the above characterization of our scientific resource
space, we need also a number of services to interact with it. In Figure 3 we show the
overall architecture of our platform, including the following functional components:
i) Scientific Catalog: locally stores the above model of the scientific resource

space, along with the necessary annotations.

Fig. 3. Architecture of the two-layered sRSMS

ii) Query Engine: provides the mechanisms to answer the queries of the clients,
expressed in a domain-specific query language expressed over the scientific cata-

log. Thanks to this module, upper layers will have access to different resources,
regardless of the specificities of the source, by the means of queries like “Get
Contributions of Person X where Topic is equal to Y” or “Get Top-K Contribu-
tions of Collection Z”. The scientific resource space would be useless without a
well-designed query language to take advantage of it.

iii) Metadata Management: provides the basic Create, Read, Update, Delete
(CRUD) functionalities over the resources expressed in terms of the proposed
conceptual model.

iv) Updater: provides capabilities to pull in metadata from the underlying RSMS, in
order to populate and keep updated the locally cached metadata, used for efficient
query processing.

In the current version of the prototype, the Metadata Management component has
been fully implemented and tested; it is exposed as RESTful web service API. In the
whole project’s design and implementation we have followed a resource oriented
architecture approach [8] to be compliant with the latest trends on web services de-
velopment. Using the RESTful API provided by the query engine, a client can exe-
cute simple queries in the form of HTTP operations over the model.

4.3 Transparent Access to Resources on the Web

The access layer of our RSMS provides us with abstractions for modeling the vast
amount of resources the Web offers and allows us to take into account also the soft-
ware aspects involved in accessing the resources. Indeed, the huge variety of re-
sources that can be part of our sRSMS is managed by different service providers that
may or may not have an API (e.g., Google Docs, various flavors of wikis, Flickr,
Google Scholar, etc). We refer to these service providers as resource managers.

In the scenario depicted by resources and resource managers in the Web era, it is
not trivial to provide abstractions, given the heterogeneity in the resource managers.
Some examples of currently available and relevant scientific domain services are
DBLP, GoogleScholar, SCOPUS, CiteUlike. All of them provide access to their
content (the scientific contributions) via different APIs/protocols (e.g. own APIs,
OAI-PMH, periodically updated datasets, etc.).

The main function of our access layer architecture ResMan (See Figure 3) is to ab-
stract the technical access-to-resource specifics, providing for them a universal re-
source space access layer. In this section, we present only a brief discussion of this
layer and we refer the reader to the Technical Report [10] for further details.

The Basic Resource Space. Figure 4 shows the conceptual model that introduces the
necessary concepts and that is also the relational model for the resource space
catalog of ResMan.

The first two elements of our model, Resources and Resource Manager, have al-
ready been introduced before. In principle, there are no limitations for the kind of
resource managers we can support, as long as they provide services for resources.
Indeed, the third element we consider is the service or action. Actions describe the
services provided by resource managers and that allows us to operate with the re-
sources. The basic elements provide operations and properties, which are specific to

the actual resource managers. Each of these elements however, can be naturally ab-
stracted to support arbitrary resources at different levels of abstractions using a ho-
mogeneous interface.

Figure 4. Resource space conceptual model

The first abstraction we consider is the resource type, which characterizes families
of resources with similar behavior. For example, all the documents from Google
Docs are of the type “Google Doc Document”, documents stored in a SVN repository
are of the type “SVN document” and if we consider a higher level of abstraction we
can say that documents from both resource managers are of the type “Document”.
This idea can also be applied to resource managers, so we can group them into re-
source manager types to denote general classifications such as repositories, search
engines, control version systems, etc. Then, it is also the case that, even though the
managing application is different, the kinds of actions that can be executed on the
resource are similar. For example, in both Wiki and Google-Docs we can have the
possibility of changing the access rights, publishing, etc. Some of these actions are
semantically equivalent but may require different parameters. We include in our
model the action type as a way of providing a common interface for these semanti-
cally equivalent actions.

ResMan Architecture. The universal RSMS access layer builds on the model
introduced in the previous section and provides seamless access to resources
disseminated over the Web. As depicted in Figure 3, the RSMS universal access
layer architecture is composed of two main modules: the resource space management
and the access management modules. These two modules run the machinery for
providing homogeneous access to resources and transparent extensibility in terms of
multiple resource managers’ support.

The resource space management module provides the means for exposing the re-
source managers (repositories, search engines, blogs, etc) available to the upper lay-
ers. Thus, this module allows us to register resource managers and the related re-
sources and actions. It also manages the mapping between these constructs and the
abstractions of resource types, action types and resource manager types.

The access management module allows interfacing with different repositories and
libraries through a standard interface. This module is able to operate on resources of
the same type (e.g. documents) with the same set of operations (e.g., create, delete,
share) using the resource-type level of abstraction. In other words, this module al-
lows executing actions on the resource managers registered from the resource space
management module. Note that this is different from executing operations directly on
the adapters where one can perform operations only on actual resources, and so the

set of operations available are specific to those specific resources. For example, con-
sider executing the operation “sharing” over a set of resources provided by different
resource managers. The actual implementation of the action “share” will likely have
a different signature in each adapter. The access module abstracts these differences
allowing clients to operate at the action type level of abstraction, which in this exam-
ple will be the “share” action type.

The interaction with the resource managers (the services providers) is performed
through adapters [6]. The Access Management module interfaces with the adapters
and exposes their functionalities to the upper layers. The added value here is the
possibility of working with different resources managers at a different level of ab-
straction; i.e., clients of this module do not need to know the details of the actual
resource managers, indeed, they do not need to know which resource manager is
providing a given service. The access management module, according to the specifi-
cation of the resource types, manages this interaction.

5 Use Case: Liquid Journals

LiquidJournals4 is one of the services within the LiquidPub framework that aims to
improve the way scientific knowledge is shared and disseminated. The deconstructed
nature [8] of liquid journals allows us to see the different roles of publishers as inde-
pendent services provided by potentially different actors on the Web. It therefore
represent an approach that leverages the opportunities and the lessons learned from
the social web. Besides the strong conceptual requirements in terms of models of
dissemination, publication, collaboration and sharing, that is, redefining the notion of
journal, building the liquid journal model implies modeling the Web as a source.

Here is where the sRSMS comes into play, providing the abstraction of the Web
as a homogeneous source that liquid journals can query as if it were a single data-
base. Let us illustrate the interaction between the liquid journals application and the
sRSMS by showing an example. Consider the case an author wants to get interesting
contributions on the topic “Web services”, and so defines a liquid journal expressing
this preference. Instead of limiting the contributions brought to the user to what is
already on the system (as in social bookmarking services), the sRSMS enables the
journal to go directly to the Web to get the contributions. This certainly makes the
difference to the author. In Figure 5 we provide an example of how the user’s ideal
journal is translated into a query.

Executing this query is not trivial. The sRSMS needs to decompose the query ex-
pressed in terms of the scientific resource space entities, identify the adapters provid-
ing support for the resource managers selected by the user, translate the query to each
adapter in terms of resources, and finally get the results and merge them according to
the scientific resource space schema.

We can also see the workflow such query will follow. The process starts in the
query engine, whose main job is to build the proper calls for the access layer based
on the input query. Within the sRSMS, some metadata can be cached in the scientific

4 http://project.liquidpub.org/research-areas/liquid-journal

catalog to answer queries faster. The query engine will also access this catalog and
then pack all the results before delivering them to the client. The updater, where
some crawling and monitoring processes are always running, will constantly update
the scientific catalog. Once the query is parsed and expressed in the terms of re-
sources (e.g., pdf files) and actions (e.g., search), the resource space management
component will map them to proper resource managers (e.g., IEEE, ACM, Sprin-
gerLink, etc.). The access management will then use the resource managers’ defini-
tion to find the corresponding adapters that will perform the calls to the actual ser-
vice providers, getting the required resources to build the requested result.

Figure 5. Liquid Journal Use Case example

At the end of the process, the Liquid Journals service will push all the results to
the person’s home page, enabling him to choose more easily. We could go further
and also add a connection to some metrics service (e.g., to get citation counts) to
assess the contributions on the query result, providing more relevant information to
support the decisions of the LJ editor. Thanks to the extensibility properties of our
sRSMS, all we need to enrich our LJ with a citation-based ranking is the correspond-
ing adapter for calling the metrics service.

Conclusion

In this paper, we have introduced concepts, an architecture, and an implementation of
a Scientific Resource Space Management System (sRSMS). The system aims at
providing a homogeneous view over and access to a space of scientific resources, in
which the resources are sourced from the Web and accessible via a variety of differ-
ent, heterogeneous technologies. Technological details are hidden to the users of the

sRSMS via two layers of abstraction: first, we describe individual resources via re-
sources types, and then we bind resource types to domain concepts. The goal is to
enable the users of the sRSMS to operate the scientific resource space via domain-
specific, intuitive instruments, such as the one shown in the Liquid Journal use case.

The innovative aspects of the proposed sRSMS are a combination of universality,
which allows us to manage any web-accessible resource; accessibility, in terms of
homogeneous and source-independent access to resources; simplicity, in terms of the
general model and of the abstractions used, and extensibility, which is a property of
both the model (which allows us to define different new resources and actions at
different levels of abstraction) and of the architecture (that allows us to plug in new
resource managers without introducing changes to the system).

The concepts, models and architectures are not theoretical only, but have been im-
plemented in a functional prototype of an RSMS. The code is available as open
source and we invite the reader to contribute to these and other tools of Liquidpub.
Our future works include integrating the sRSMS into the Liquidpub platform, ex-
tending the resource space to other related domains, and analyzing new usage scenar-
ios to improve the sRSMS’s applicability.

Acknowledgement. This work has been supported by the EU ICT project
LiquidPublication. The LIQUIDPUB project acknowledges the financial support of
the Future and Emerging Technologies (FET) programme within the Seventh
Framework Programme for Research of the European Commission, under FET-Open
grant number: 213360.

References
1. M. Franklin, A. Halevy, D. Maier. From databases to dataspaces: a new abstraction for

information management. SIGMOD Rec. 34, 4 (Dec. 2005), pp. 27-33.
2. A. Halevy, M. Franklin, D. Maier. Principles of dataspace systems. PODS, 2006.
3. D. Braga, S. Ceri, F. Daniel, D. Martinenghi. Optimization of Multi-Domain Queries on

the Web. VLDB 2008, pp. 562-573, Auckland, New Zealand, August 2008
4. B. Benatallah, F. Casati, F. Toumani. Web services conversation modeling: A Corner-

stone for EBusiness Automation. IEEE Internet Computing, 8(1), 2004.
5. S. R. Ponnekanti and A. Fox. Interoperability among Independently Evolving Web Serv-

ices. Middleware '04. Toronto, Canada, 2004.
6. B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F. Toumani. Developing adapt-

ers for web services integration. CAiSE, 2005.
7. M. Baez, C. Parra, F. Casati, M. Marchese, F. Daniel, K. di Meo, S. Zobele, C. Menapace,

B. Valeri: Gelee: Cooperative Lifecycle Management for (Composite) Artifacts. IC-
SOC/ServiceWave 2009: 645-646

8. H. Overdick. The resource-oriented architecture. IEEE Congress on Services (Services
2007), 2007, pp. 340–347.

9. J. Smith, “Free Content The deconstructed journal–a new model for academic publishing”
Learned publishing, vol. 12, 1999, pp. 79–91.

10. C. Parra, M. Baez, F. Daniel, F. Casati, M. Marchese and L. Cernuzzi. A Scientific Re-
source Space Management System. Technical Report DISI-10-013, Ingegneria e Scienza
dell'Informazione, University of Trento. 2010. http://eprints.biblio.unitn.it/archiveb/
00001812/

