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Pattern mining, that is, the automated discovery of patterns from data, is a mathematically complex and
computationally demanding problem that is generally not manageable by humans. In this article, we focus
on small datasets and study whether it is possible to mine patterns with the help of the crowd by means of
a set of controlled experiments on a common crowdsourcing platform. We specifically concentrate on mining
model patterns from a dataset of real mashup models taken from Yahoo! Pipes and cover the entire pattern
mining process, including pattern identification and quality assessment. The results of our experiments
show that a sensible design of crowdsourcing tasks indeed may enable the crowd to identify patterns from
small datasets (40 models). The results, however, also show that the design of tasks for the assessment of
the quality of patterns to decide which patterns to retain for further processing and use is much harder (our
experiments fail to elicit assessments from the crowd that are similar to those by an expert). The problem
is relevant in general to model-driven development (e.g., UML, business processes, scientific workflows),
in that reusable model patterns encode valuable modeling and domain knowledge, such as best practices,
organizational conventions, or technical choices, that modelers can benefit from when designing their own
models.
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1. INTRODUCTION

Mashups are composite web applications that are developed by integrating data, ap-
plication logic, and pieces of user interfaces [Daniel and Matera 2014]. Mashup tools
are integrated development environments (IDEs) that aim to ease the implementation
of mashups. Typically, these tools adopt a model-driven development paradigm, where
developers express application logic via graphical models that can be interpreted at
runtime or transformed into executable code. Yet, developing good mashups is still a
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nontrivial task. It requires not only fluency in the modeling language but also intimate
knowledge of the target domain (e.g., the practices, conventions, and procedures that
characterize the domain) and of the respective technologies. These requirements do
not apply to mashups only. We find them over and over again in all those contexts
that leverage on model-driven formalisms, such as service composition [Alonso et al.
2003], business processes [Weske 2007], scientific workflows [Deelman et al. 2009],
UML [OMG 2014], or web engineering with IFML [Object Management Group 2014].

One approach to mitigate this complexity is assisting developers in their task by pro-
viding them with automated modeling recommendations. In the context of mashups,
this approach has produced a variety of techniques: Carlson et al. [2008], for instance,
recommend possible next components to be used in response to the modeler using a
given component; the approach is based on semantic annotations of component descrip-
tors. Greenshpan et al. [2009] propose an approach that recommends components and
connectors (so-called glue patterns) in response to the modeler providing a set of desired
components; the approach computes top-k recommendations out of a graph-structured
knowledge base containing components and glue patterns (nodes) and their relation-
ships (arcs). Chen et al. [2009] allow the modeler to mash up components by navigating
a graph of components and connectors; the graph is generated in response to a query
providing descriptive keywords. Riabov et al. [2008] also follow a keyword-based ap-
proach to express goals to feed a planner that derives candidate mashups. Elmeleegy
et al. [2008] recommend components based on co-occurrence probabilities and seman-
tic matching; upon the selection of a component, an automatic planner derives how to
connect the selected component with the partial mashup.

In our own prior work, we contributed to the state of the art with an extension of
Yahoo! Pipes (http://pipes.yahoo.com) that interactively recommends and weaves com-
plex mashup model patterns while modeling a “pipe” (a data mashup). Recommended
patterns were mined from a repository of freely accessible pipes models [Rodrı́guez
et al. 2014b]; the specific dataset used consisted of 997 pipes taken from the “most pop-
ular pipes” category, assuming that popular pipes are more likely to be functioning and
useful. Before their use, patterns were checked by an expert to ensure their meaning-
fulness and reusability. The extension is called Baya, and our user studies demonstrate
that recommending model patterns has the potential to significantly lower development
times in model-driven mashup environments [Roy Chowdhury et al. 2014].

The approach, however, suffers from problems that are common to pattern min-
ing algorithms in general: identifying good support threshold values, managing large
numbers of produced patterns, coping with noise (useless patterns), giving meaning
to patterns, and dealing with the cold start problem (mining patterns from empty or
very small datasets that still need to grow) is hard. Inspired by the recent research on
crowdsourcing [Howe 2008], the intuition emerged that it might be possible to attack
these problems with the help of the crowd, that is, by involving humans in the mining
process. The intuition is backed by the observation that pure statistical support does not
always imply interestingness [Geng and Hamilton 2006], and that humans are anyway
the ultimate ones responsible for deciding about the suitability of discovered patterns.

In Rodrı́guez et al. [2014a], we studied one approach to mine mashup model patterns
for Yahoo! Pipes with the help of the crowd (the Naı̈ve approach presented in this
article), compared it with our automated mining algorithm described in Rodrı́guez
et al. [2014b], and discussed its applicability to business process models. The study in
this article builds on these prior works and advances them along three directions:

—The design and implementation of two new crowd-based pattern mining approaches
that aim to understand if the crowd is able to spot repeated patterns in a dataset
(support) and their comparison with the Naı̈ve and automated approaches
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—The design, implementation, and comparison of two crowd-based pattern quality
assessment approaches and one expert-based quality assessment approach

—An analysis of the work performance of the crowd and of its ability to self-curate a
pattern knowledge base as required by recommendation tools.

Next, we introduce the background of this study and state our research questions.
Then, we describe the overall design of the study and the adopted methodology. In
Sections 4 and 5, we describe the mining and quality assessment approaches and refine
the research questions into more concrete subquestions, study them, and discuss our
findings. In Section 6, we discuss the limitations and threats to the validity of the work
and then close the article with related works and our final considerations.

2. BACKGROUND AND RESEARCH QUESTIONS

2.1. Reference Mashup Models: Data Mashups

Data mashups are a special type of mashups that specifically focus on the integration
and processing of data sources available on the web. Typical data sources are RSS and
Atom feeds, plain XML and JSON resources, or more complex SOAP and RESTful web
services. Data mashup tools are IDEs for data mashup development. They provide a set
of data processing operators (e.g., filters or split-and-join operators) and the possibility
to configure data sources and operators (we collectively call them components).

In this article, we specifically focus on the data mashup tool Yahoo! Pipes and our
pattern recommender Baya [Roy Chowdhury et al. 2014]. The components and mashups
supported by these tools can be modeled as follows: let CL be a library of components
of the form c = 〈name, IP, IF, OP, emb〉, where name identifies the component (e.g.,
RSS feed or Filter), IP is the set of input ports for data-flow connectors, IF is the set
of input fields for the configuration of the component, OP is the set of output ports,
and emb ∈ {yes, no} tells whether the component allows for the embedding of other
components or not (e.g., to model loops). We distinguish three classes of components:
Source components fetch data from the web or collect user inputs at runtime. They
don’t have input ports: IP = ∅. Data processing components consume data in input
and produce processed data in output: IP, OP �= ∅. A sink component (the Pipe Output
component) indicates the end of the data processing logic and publishes the output
of the mashup (e.g., using JSON). The sink has neither input fields nor output ports:
IF, OP = ∅.

A data mashup (a pipe) can thus be modeled as m = 〈name, C, E, DF, VA〉, where
name uniquely identifies the mashup, C is the set of integrated components, E ⊆
C × C represents component embeddings, DF ⊆ (∪iOPi) × (∪ jIP j) is the set of data-
flow connectors propagating data from output to input ports, and VA ⊆ (∪kIFk) ×
STRING assigns character string values to input fields. Generic strings are interpreted
as constants, and strings starting with “item.” map input data attributes to input fields.
A pipe is considered correct if it (1) contains at least one source component, (2) contains
a set of data processing components (the set may be empty), (3) contains exactly one
sink component, (4) is connected (in the sense of graph connectivity), and (5) has value
assignments for each mandatory input field.

A mashup model pattern (see Figure 4 for an example) can thus be seen as a tuple
mp = 〈name, desc, tag, C, E, DF, VA〉, with name, desc, and tag naming, describing, and
tagging the pattern, respectively, and C, E, DF, VA being as defined earlier, however
with relaxed correctness criteria: a pattern is correct if it (1) contains at least two
components, (2) is connected, and (3) has value assignments for each mandatory input
field.

For a better understanding of the type of patterns we are looking for, Figure 1 shows
the screen shot of a correct pattern and links its elements to the conceptual model. In
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Fig. 1. A simple Yahoo! Pipe that plots news on a map [Roy Chowdhury et al. 2014].

essence, the pattern shows how to enrich an RSS feed with geo-coordinates and plot
the enriched feed on a Yahoo! map. If we analyze the figure, we easily acknowledge
that implementing the respective logic requires good knowledge of Yahoo! Pipes: the
URL Builder component requires setting configuration parameters. Components need
to be connected in order to allow data to flow; that is, the outputs of the components
must be mapped to inputs of other components. More importantly, plotting news onto
a map implies knowing that this requires enriching an RSS feed with geo-coordinates,
fetching the actual feed, and only then plotting the items on a map. This logic is neither
trivial nor intuitive without profound prior knowledge—and the example is still simple.

2.2. Crowdsourcing

Crowdsourcing (CS) is the outsourcing of a unit of work to a crowd of people via an
open call for contributions [Howe 2008]. A worker is a member of the crowd (a human)
that performs work, and a crowdsourcer is the organization, company, or individual
that crowdsources work. The crowdsourced work comes in the form of a crowd task
(i.e., a unit of work that requires human intelligence and that a machine cannot solve
in useful time or not solve at all). Examples of crowd tasks are annotating images with
tags, translating text from one language into another, or designing a logo.

A crowdsourcing platform is an online software infrastructure that provides access
to a crowd of workers and can be used by crowdsourcers to crowdsource work. Multiple
CS platforms exist, which all implement a specific CS model: the marketplace model
caters to crowd tasks with fixed rewards for workers and clear acceptance criteria by
the crowdsourcer. The model particularly suits micro-tasks like annotating images and
is, for example, adopted by Amazon Mechanical Turk (https://www.mturk.com) and
CrowdFlower (http://crowdflower.com). The contest model caters to tasks with fixed
rewards but unclear acceptance criteria; workers compete with their solutions for the
reward, and the crowdsourcer decides who wins. The model suits creative tasks like
designing a logo and is, for example, adopted by 99designs (http://99designs.com). The
auction model caters to tasks with rewards to be negotiated but clear acceptance cri-
teria. The model suits creative tasks like programming software and is, for example,
adopted by Freelancer (http://www.freelancer.com).

For the purpose of this article, we specifically leverage on micro-tasks in marketplace
CS platforms. Crowdsourcing a task in this context involves the following steps: The
crowdsourcer publishes a description of the task to be performed, which the crowd can
inspect and possibly express interest for. In this step, the crowdsourcer also defines
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the reward workers will get for performing the task and how many answers (task
instances) should be collected (instantiated) per task. Not everybody of the crowd
may, however, be eligible to perform a given task, either because the task requires
specific capabilities (e.g., language skills) or because the workers should satisfy given
properties (e.g., only female workers). Deciding which workers are allowed to perform a
task is called preselection, and it may be done either by the crowdsourcer manually or
by the platform automatically (e.g., via questionnaires). Once workers are enabled to
perform a task, the platform creates as many task instances as necessary to collect the
expected number of answers. Upon completion of a task instance (or a set thereof), the
crowdsourcer may inspect the collected answers and validate the respective quality.
The crowdsourcer rewards only work that passes the check.

2.3. Research Questions

The final goal of this work is to understand whether it is possible to delegate to the
crowd the identification of patterns and the curation of a pattern knowledge base in
situations with “small” datasets (dozens rather than thousands or millions). These are
typical cold-start situations in which automatic algorithms perform poorly.

The assumptions underlying this research are that (1) the patterns obtained with the
help of the crowd can be as interesting as the ones obtained by automated algorithms,
(2) we have access to a repository of mashup models of limited size (in our experiments
we specifically study the case of 40 models), (3) the identification of patterns can be
crowdsourced as micro-tasks via maketplace-based CS platforms (we study three task
designs with different levels of visibility into the dataset: one, three, and 10 models),
and (4) the assessment of patterns can be crowdsourced as micro-tasks (we study two
task designs that allow workers to rate individual patterns or to pairwise compare
them).

Accordingly, the work aims to answer the following research questions:

RESEARCH QUESTION 1 (PATTERN MINING). Is the crowd able to discover meaningful,
reusable mashup model patterns from a dataset of 40 models using micro-task designs
that provide different levels of visibility of the dataset (one/three/10 models)?

RESEARCH QUESTION 2 (QUALITY ASSESSMENT). Is it possible to crowdsource the qual-
ity assessment of identified patterns using task designs that allow the crowd to rate
individual patterns or to pairwise compare them?

It is important to note that we use the term “mining” with its generic meaning
of “discovering knowledge,” which does not necessarily imply machine learning. In
particular, the intuition of this work is that individual workers are able to identify
reusable fragments (patterns) inside mashup models, where the identified patterns
are not based on statistical recurrence but rather on human inspection and reasoning.
Also, note that the second research question subsumes the availability of suitable
mashup model patterns, for instance, identified by the crowd, mashup developers, or
experts.

3. STUDY DESIGN

3.1. Methodology

The study is designed to address the two research questions and is inspired by the
work presented in Stolee and Elbaum [2010]. It is divided into two parts. In the first
part, we answer Research Question 1 by crowdsourcing the identification of patterns.
The key design decisions of this part regard the datasets used, the task design, the
selection of workers, and the acceptance criteria for patterns. The second part of the
study is devoted to the assessment of patterns submitted by the crowd. The key design
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decisions are related, again, to the design of the tasks, the set of criteria used to assess
the patterns, and the assessment of workers. The detailed design of the experiment
is outlined in Figure 2 that illustrates the conceptual process model of the research
methodology using BPMN4Crowd, a BPMN [OMG 2011] extension for crowdsourcing
we are developing in another project [Tranquillini et al. 2014].

The study starts with downloading a set of mashup models from Yahoo! Pipes. The
collected dataset consists of 997 pipes randomly selected from the “most popular” pipes
category of Yahoo! Pipes’ online repository. We opted for this category because it is very
common to find pipes in Yahoo! Pipes that are just half elaborated or simply do not
work. By focusing our attention on this category, pipes are most likely to be functional
and useful. Pipes models are represented in JSON. The “small dataset” was constructed
by randomly selecting 40 pipes out of the 997 (making sure we kept only pipes that
were runnable and meaningful). To feed the crowd-based mining experiments, we also
collected the screen shots of each of the 40 pipes through the Yahoo! Pipes editor.

Once the datasets are constructed, we run two pattern identification experiments
based on (1) a crowd-based approach with three different designs for the pattern iden-
tification task and (2) an automated mining approach run over two datasets of different
sizes (with 40 and 997 pipes) (Section 4). The crowd-based approach aims to study the
performance of the crowd in the function of different levels of dataset visibility (to
understand if the crowd also looks for support); the automated approach studies the
performance of the machine in the function of different dataset sizes and minimum
support levels. The SplitWith(n) operator splits the input dataset into collections of
one, three, and 10 pipes; each collection is processed by a corresponding task design
of the crowd-based approach (as explained in Section 4.1). The three crowd tasks are
followed by a Filter operator that drops patterns that have fewer than two components,
are not connected, and do not have all input fields filled with meaningful information.
This last part of the Filter operator is done manually by an expert, for example, to
filter out meaningless text like random key inputs such as “asdf” and “qwerty.” Then,
all patterns are used to compute a set of metrics (number of patterns, average pattern
size, cost per pattern) that, in turn, are used to answer Research Question 1.

Starting from the set of patterns produced by the best crowd approach, the pro-
cess proceeds with the study of whether the crowd can be used to validate patterns
(Section 5). We compare three approaches: expert assessment (us) versus crowd assess-
ment of individual patterns versus crowd assessment of pairs of patterns. Patterns are
split into two equal-sized subsets for the experts, subsets of size 1 for the first crowd
assessment, and pairs of patterns for the second crowd assessment. The process models
also the experts’ task as a crowd task, in that they too can be seen as a crowd (a group
of two). The study ends with a comparison of the results and the answer to Research
Question 2.

3.2. Crowdsourcing Approach

Figure 3 illustrates the approach we followed to crowdsource the crowd mining
and assessment tasks of the study using the crowdsourcing platform CrowdFlower
(http://www.crowdflower.com). The deployment of tasks on CrowdFlower requires the
configuration of suitable forms to collect data from the crowd, the uploading of
the dataset that contains the units of work (i.e., the mashup models and patterns),
and the preparation of the qualification tests for workers, among other tasks that are
specific to CrowdFlower. Once the tasks are deployed, CrowdFlower posts them to
third-party platforms, such as Amazon Mechanical Turk or MinuteWorkers, where the
crowd can actually perform the requested work.

Each pattern identification task points to an external pattern selector page where
the crowd can select patterns from the mashups in the dataset. Each mashup model is
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Fig. 3. Approach to crowd-based pattern mining with CrowdFower: patterns are collected via a dedicated
Pattern Selector application and assessed using standard forms as provided by CrowdFlower.

configured to be shown to at least three workers, in order to guarantee that each model
gets properly inspected, and a monetary reward is set for each pattern provided by the
crowd. For each of the three crowd approaches, the pattern selector provides a different
implementation (discussed in the next section). The pattern selector page consists of
a standard web application implemented in Java, HTML, CSS, and JavaScript that
renders the screen shot(s) of the pipe(s) to be analyzed. The worker can also provide a
name, a description and a list of tags to equip the pattern with additional metadata.
Inputs provided by the workers are validated, for example, to check that a worker
indeed selects a pattern in the mashup model. The web application is hosted on a web
server operated by us. The web server hosts a model repository where the mashup
models are stored and from where the pattern selector page gets the models. It also
hosts a pattern repository where the patterns selected by the crowd are stored for
further analysis.

For the quality assessment tasks, instead, CrowdFlower provides enough support to
implement suitable evaluation questionnaires and to crowdsource the tasks without
the need for any external application. Collected quality assessments are stored for
further analysis in a dedicated quality assessments repository on our web server.

4. MINING MODEL PATTERNS

To answer Research Question 1 (Section 2.3), we implemented three different crowd
task designs and one automated mining algorithm. The three designs are an attempt
to compare the performance of the crowd by varying the number of pipes per task, the
key property that distinguishes the crowd approaches from the automated one; they
do not yet represent an in-depth study of how to identify the best design. The idea
of presenting workers with different levels of insight into the available dataset stems
from the background of this work (i.e., pattern mining), which is commonly based on
the concept of statistical support (repetition). The question the three designs aim to
answer, hence, is not only whether the crowd is able to identify patterns but also if it
is able to spot repetitions and how much insight into the dataset is beneficial, if at all.
The automated algorithm is run with different support levels and dataset sizes and
the results are compared to the ones obtained by the crowd-based approach.
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Fig. 4. Task design for the identification of mashup model patterns (Naı̈ve setting).

4.1. Mining Tasks and Algorithms

A core decision when crowdsourcing a task is how to design the UI used to inter-
act with workers. In general, all crowdsourcing platforms available today allow the
crowdsourcer to design form-based user interfaces directly inside the crowdsourcing
platform. For the crowdsourcing of simple tasks, such as the annotation of images or the
translation of a piece of text, this is sufficient to collect useful feedback. In more com-
plex crowdsourcing tasks, such as our problem of identifying patterns inside mashup
models, textual, form-based UIs are not enough and a dedicated, purposefully designed
graphical UI (the pattern selector page) is needed.

In order to make workers feel comfortable with the selection of patterns inside
pipes models, we wanted the representation of the pipes to be as close as possible to
what real pipes look like. In other words, we did not want to create an abstract or
simplified representation of pipes models (e.g., a graph or textual description) and,
instead, wanted to keep the full expressive power of the original representation. We
therefore decided to work with screen shots of real pipes models, on top of which we
allow workers to select components of the model and to construct patterns by simply
clicking on the respective components. Figure 4 shows a screen shot of the UI we
implemented for selecting patterns inside a pipes model; the UI shows a pipe with
a total of nine components, of which five have been selected by the worker to form
a pattern (the green-shaded components). In this case, the selected pattern performs a
useful task (in the context of Feed processing) that consists of fetching (unsorted) feeds
from the web and taking only the N (three in this case) most recent feeds. The worker
only selects components; the derived pattern contains the components along with the
respective data-flow connectors, value assignments, and data mappings (this to keep
the pattern identification simple). Next to selecting a pattern, the worker is also asked
to provide additional information about the pattern, such as a name, a description, and
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at least three tags. The worker may further tell how often he or she has already seen
or used the pattern before, and how useful he or she thinks the pattern is.

In order to make sure that workers know Yahoo! Pipes, we include a set of five
multiple-choice preselection questions in each of the task designs, such as “Which of
the following components can be embedded into a loop?” or “What is the maximum
number of Pipe Output modules permitted in each pipe?” (See Appendix A for a screen
shot of the questionnaire used.) In order for a worker to be paid, he or she must correctly
answer these questions, for which we already know the answers (so-called gold data).

4.1.1. Naı̈ve Task Design. This task design presents the worker with one pipe and asks
him or her to identify a fragment of the pipe that consists of components that jointly
perform a useful task and that can be reused to solve a recurrent problem. The task
design is exactly that in Figure 4, which provides the maximum freedom in selecting
the components that make up a pattern.

4.1.2. Random3 Task Design. This task design randomly selects three pipes from the
available dataset of 40 pipes and shows them to the worker; the first pipe allows the
worker to identify patterns as described in Figure 4. Figure 13 in Appendix A illustrates
the complete task UI for this setting. This design provides the worker with access to
more data, which may help him or her identify repetitive patterns. Again, the worker
is asked to provide additional metadata via the form.

4.1.3. ChooseN Task Design. This task design randomly selects 10 pipes out of the
dataset of 40 pipes and allows the worker to select again n ∈ {1..10} pipes for the
identification of patterns. First, the worker selects the pipes of interest, and then he
or she is presented with a page for pattern identification similar to the one adopted
for the Random3 setting. Figure 14 in Appendix A illustrates the UI that allows the
worker to choose the pipes of interest. This task design provides the worker with most
information for the identification of patterns.

4.1.4. Machine Algorithm. Automatically mining mashup patterns of the form mp =
〈C, E, DF, VA〉 requires identifying repetitive fragments that include the components
C, possible component embeddings E, the data flows DF among the components, and
the values VA for their input parameters. Doing so is nontrivial, because we need to
mine data at different levels of granularity and make sure that the resulting patterns
are indeed meaningful. We do this by means of Algorithm 1 (Machine), which mines
what in Rodrı́guez et al. [2014b] we called “multicomponent patterns.” The algorithm
first identifies recurrent components and data flows (lines 1–5), then it identifies the
most recurrent value assignments and data mappings for the identified components
(lines 6–18), and finally assembles everything into connected patterns (lines 19–22).
Data mappings of input data attributes to input fields are dealt with by the parameter
values that have a prefix “item.” for the input fields that accept dynamic input data.
The core mining tasks are based on a standard frequent subgraph mining algorithm
(line 5) and a standard frequent itemset mining algorithm (line 18) [Tan et al. 2005].

4.2. Experiment Design

In order to be able to provide clear insights into the ability of the crowd to mine mashup
model patterns in the presence of small datasets, we articulate Research Question 1
into the following subquestions:

—Feasibility: does crowdsourcing the tasks Naive, Random3, or ChooseN allow one to
mine reusable mashup model patterns from mashup models?

—Value: do model patterns identified through Naive, Random3, or ChooseN contain
more domain knowledge than automatically mined patterns?
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ALGORITHM 1: Machine
Data: repository of mashup models M, minimum support (minsuppcdf ) for components

and data flows, minimum support (minsupppar) for parameter values
Result: set of patterns 〈C, E, DF, VA〉.

1 DBg = array(); // create database of graph representations of mashups
2 foreach m ∈ M do
3 g = getGraphRepresentation(m);
4 append(DBg, g);

5 FG = mineFrequentSubraphs(DBg, minsuppcdf ); // mine frequent subgraphs
6 DBmc = array(); // retrieve all instances of each subgraph from dataset M
7 foreach m ∈ M do
8 foreach fg ∈ FG do
9 if getGraphRepresentation(m) contains fg then

10 mf = getSubgraphInstance(m, fg);
11 append(DBmc[ fg], mf );

12 Patterns = set(); // create database of mashup patterns
13 foreach MC ∈ DBmc do
14 DBVA = array(); // mine frequent parameter values (including data mappings)
15 foreach mc ∈ MC do
16 foreach c ∈ mc.C do
17 append(DBV A, c.VA);

18 F Iva = mineFrequentItemsets(DBVA, minsupppar);
19 foreach VA ∈ F Iva do
20 foreach mc ∈ MC do
21 if VA ∈ mc then
22 Patterns = Patterns ∪ {〈mc.C, mc.E, mc.DF, VA〉}; // assemble patterns

23 return Patterns; // return database of mashup patterns

—Cost effectiveness: is pattern identification with Naive, Random3, or ChooseN more
cost-effective than with a dedicated domain expert?

The subquestions interpret crowd-based pattern mining as a solution that brings
together characteristics of both automated algorithms and domain experts and thus
compares them with the quality of automated algorithms, on the one hand, and the
cost of involving a domain expert, on the other hand.

4.2.1. Experiment Design and Dataset. The three crowd approaches are implemented as
outlined earlier using the CS platform CrowdFlower. Running them is a joint manual
and automated effort: the pattern selector application takes care of initializing the
dataset (the pipes models), partitioning it, and mapping partitions to tasks at runtime.
The actual tasks are deployed manually on CrowdFlower and executed by the crowd.
Filtering out valid patterns is again done manually. For each pipe, we request at least
three judgments, estimated a maximum of 300 sec per task, and rewarded USD 0.10
per task. The Machine algorithm is implemented in Java. The core parameter used
to fine-tune the algorithm is the minimum support that the mined subgraphs must
satisfy (minsuppcdf ); we therefore use this variable to test and report on different test
settings.

The dataset available consists of 997 pipes (with 11.1 components and 11.0 connectors
on average) randomly selected from the “most popular” pipes category of Yahoo! Pipes’
online repository. The JSON representation of the pipes is used by the automatic

ACM Transactions on Internet Technology, Vol. 16, No. 3, Article 17, Publication date: June 2016.



17:12 C. Rodrı́guez et al.

mining algorithm and to validate inputs in the task UIs; the screen shots are used to
collect patterns from the crowd as explained earlier. We run the Machine algorithm
with datasets of 997 (big dataset) and 40 pipes (small dataset). We use Machine997 and
Machine40 to refer to the former and the latter setting, respectively. We run Naive,
Random3, and ChooseN only with 40 pipes (small dataset).

4.2.2. Evaluation Metrics. While for automated mining it is clear by design what the
output of an algorithm looks like, this is not as clear if the identification of patterns
is delegated to the crowd. As described earlier, workers may not clearly understand
the goals of a task or cheat and, hence, not provide meaningful data. To filter out
those patterns that we can instead reasonably trust, we define a set of minimum
criteria for crowd-mined patterns: a valid mashup pattern is a correct pattern that
consists of at least two modules and where the modules are connected, the name
and description of the pattern are not empty, and the description and the pattern
structure match semantically. The first three criteria we enforce automatically in the
pattern identification UIs of the three crowd tasks. Whether the description and pattern
structure match semantically (i.e., whether the description really tells what the pattern
does) is assessed manually by experts (us). The result of this analysis is a Boolean:
either a pattern is considered valid (and it passes the filter) or it is considered bad
(and it fails the filter). Note that with “valid” we do not yet assert anything about the
actual value of a pattern; this can only be assessed with modelers using the pattern
in practice. The same expert-based filter is usually also applied to the outputs of
automated mining algorithms and does not introduce any additional subjective bias
compared to automated mining scenarios. These prefiltering criteria are intimately
related to the context we are dealing with (i.e., Yahoo! Pipes); other contexts may
require different criteria.

In order to compare the performance of the five test settings, we use three metrics to
compare the pattern sets they produce in output: the number of patterns found gives an
indication of the effectiveness of the algorithms in finding patterns; the average pattern
size, computed as the average number of components of the patterns in the respective
output sets, serves as an indicator of how complex and informative identified patterns
are; and the distribution of pattern sizes shows how diverse the identified patterns
are in terms of complexity and information load. The cost per pattern of the different
approaches allows us then to reason on the cost efficiency.

We use the size of patterns/pipes (number of components) as a proxy to measure
complexity. This is an approximation of the true complexity of model patterns. In
general, complexity is multifaceted and may consist of different aspects, such as
McCabe’s cyclomatic complexity [McCabe 1976] for generic code that counts the number
of possible independent paths through the code (indeed, model patterns can be seen as
fragments of code). Given the context of this work (i.e., recommending model patterns
inside modeling environments), the size of patterns is, however, a good approximation
of how pattern complexity is perceived by users inside the modeling environment.

4.3. Results

Figure 5 summarizes the task instances created and the patterns collected by running
the three crowd tasks. The crowd started a total of 326 task instances of Naive, while
it submitted only 174 patterns through our pattern selector application. This means
that a total of 152 task instances were abandoned without completion. Out of the 174
patterns submitted, only 42 patterns satisfied our criteria for valid mashup patterns;
the 42 valid patterns were identified by eight different workers. Running Random3 and
ChooseN produced a similar number of task instances each (320 and 334), while the
number of submitted patterns significantly dropped (17 and 14), as did the number
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Fig. 5. Crowd task instances started and patterns.

Fig. 6. Numbers of patterns produced by automated mining under varying minimum support levels. The
charts also report the number of patterns produced by the three crowd-based mining algorithms (in black).

Fig. 7. Average size of the patterns produced by automated mining under varying minimum support levels.
The average sizes of the patterns produced by the crowd-based mining algorithms are reported in black.

of valid patterns retained (10 and 3). The difference between submitted and retained
patterns confirms the viability of the valid pattern criteria.

For Naive (which shows the best results), we checked whether there is a correlation
between the complexity of a pipe and the number of patterns submitted. The Pearson’s
correlation coefficient computed for all submitted patterns is rS = −0.1422, while for all
retained patterns it is rR = 0.0750. These values are quite low and we cannot conclude
that there is a significant association between the complexity of pipes and the number
of patterns submitted or retained, nor could we find any threshold for the complexity
of pipes above/below which the performance of the crowd drops.

The charts in Figures 6 through 8 report on the numbers of patterns, average pattern
sizes, and distribution of pattern sizes obtained by running Machine997 and Machine40

with different minimum relative support levels supmin. The bars in gray are the results
of the Machine algorithm; the black bars represent the results of the crowd approaches.
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Fig. 8. Pattern size distribution by the five algorithms. The histograms of Machine997 and Machine40 refer
to the run with the minimum support level that produced a number of patterns similar to Naive.

For comparison, we placed these latter at a support level of supmin = 0.025, which
corresponds to 1/40 = 0.025, in that we ask workers to identify patterns from a single
pipe without the need for any additional support (even if more than one pipe is shown).

4.3.1. Feasibility. Figure 6(a) illustrates the number of patterns found by Machine997.
The number quickly increases for Machine997 as we go from high support values to low
values, reaching almost 500 patterns with supmin = 0.01. Figure 6(b) shows the results
obtained with Machine40. The lowest support value for Machine40 is supmin = 0.05,
which corresponds to an absolute support of two in the dataset. It is important to note
that only very low support values produce a useful number of patterns. In both figures,
the black bar represents the 42, 10, and three patterns respectively identified by Naive,
Random3, and ChooseN.

The two figures show the typical problem of automated pattern mining algorithms:
only a few patterns for high support levels (which are needed, as support is the only
criterion expressing significance), too low support levels required to produce useful out-
put sizes with small datasets (our goal), and an explosion of the output size with large
datasets. Figure 5 shows that Naive is instead able to produce a number of patterns
in output that is similar to the size of the dataset in input; Random3 and ChooseN do
not perform as well. Notice also that, while Figure 6 reports on all the patterns found
by Machine, the data for the crowd algorithms include only valid patterns. This means
that not only is Naive able to find a good number of patterns but also it is able to find
practically meaningful patterns. Understanding the actual value of the patterns would
require its own study in which the users of the patterns are involved. We discuss next
the value of the resulting patterns from our perspective and that of our experimental
setting.

4.3.2. Value. Figure 7 shows the average pattern sizes of Machine997 and Machine40

compared to that of the crowd approaches. In both settings, the average pattern size
obtained with Naive clearly exceeds the one that can be achieved with Machine, even for
very low support values (0.01); Random3 and ChooseN perform similarly to Machine.
With Figure 8, we look more specifically into how these patterns look like by comparing
those runs of Machine997 and Machine40 with the crowd approaches that produce a
similar number of patterns in output as Naive. In both settings, this happens for
supmin = 0.05 and produced 44 and 35 patterns, respectively. Figures 8(a) and 8(b)
show that automatically mined patterns are generally small (sizes range from two
to four), with a strong prevalence of the most simple and naı̈ve patterns (size two).
Figure 8(c), instead, shows that the results obtained with Naive present a much higher
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diversity in the pattern sizes, with a more homogeneous distribution and even very
complex patterns of sizes that go up to 11 and 15 components. Random3 and ChooseN
(Figures 8(d) and 8(e)) again do not perform better than Machine. Naive is thus able to
collect patterns that contain more complex logics and that are more informative; that
is, they provide richer examples of how to use components and how to combine them
together. This can be attributed to the higher freedom in selecting components when
working with Naive and to the fact that the crowd tends to work on a least-effort basis
(it is harder to come up with elaborated patterns when working with Random3 and
ChooseN). These patterns also come with a characterizing name, description, and list
of tags. These annotations not only enrich the value of a pattern with semantics but also
augment the domain knowledge encoded in the pattern and its reusability. Patterns
identified with Naive thus contain more domain knowledge than the patterns mined
automatically and the ones mined with Random3 and ChooseN; these latter instead
produce patterns of similar size to the automatically mined patterns, with ChooseN
performing the worst among all studied approaches.

4.3.3. Cost Effectiveness. The aforementioned results for Naive show that crowd-based
pattern mining can outperform machine-based mining for small datasets in terms of
productivity (more specifically, the ratios of number of patterns found per number of
pipes in input are 35/40 = 0.86 and 42/40 = 1.05 for Machine40 and Naive, respec-
tively). The alternative to automated mining would be asking an expert to identify
patterns, which is expensive. Here, crowd-based mining also outperforms the expert.
As outlined in Figure 9, with a cost per pattern of USD $ 0.42 and a running time of
approximately 6 hours, Naive proves to be a very competitive alternative to hiring a
domain expert: we paid only USD $ 2.83 per hour, a price that is hard to beat compared
to hiring a domain expert. Given the low number of patterns identified by Random3
and ChooseN, their cost per pattern is significantly higher (USD $1.76 and USD $5.58),
which makes them less suitable also from an economical point of view.

4.4. Discussion

The aforementioned results manifest a high sensitivity of the crowd mining algorithms
to the design of the crowd tasks. In this respect, we distinguish between intuitiveness
(including ease of use) and complexity of tasks. Regarding the intuitiveness, we con-
sidered collecting patterns via textual input (e.g., the list of component names in a
pattern) or via abstract data- flow graphs (automatically constructed from the JSON
representation of pipes). After a set of informal, pre-experiment tests of the crowd task
designs to adopt, we opted for the screen shots. This has proven to be the representation
workers seem to be most familiar with (screen shots do not introduce any additional
abstraction), and this is the approach we implemented in the three crowd tasks. The
identification of the design to adopt was a best-effort task not aimed at identifying the
best possible design, which we consider future work. As for the complexity of the tasks,
the Naive, Random3, and ChooseN algorithms provide the worker with access to one,
three, and 10 pipes, respectively, that is, with different information loads. The three
algorithms produced a comparable number of task instances, while they strongly differ
in the number of patterns submitted and retained. The three alternative designs al-
lowed us to understand whether more visibility into the available dataset would allow
the crowd to spot repeated patterns, or whether pattern identification by the crowd is
mostly based on semantic/functional considerations. The results we obtained from our
experiments confirm that the side effect of such expanded visibility inevitably leads to
more complexity, which in turn leads to high abandon rates (see Figure 5). We interpret
this as evidence that high information loads only scare people away (instead of helping
them) in the context of pattern identification. The lesson learned is thus to keep tasks
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Fig. 9. Total cost of crowdsourcing experiments (gray) and cost per pattern (black).

as simple as possible, that is, to apply the KISS (Keep It Simple, Stupid) principle.
The result, although in line with similar findings in the area of crowdsourcing [Mason
and Watts 2010], is particularly important in the area of pattern mining that instead
typically requires the analysis of large datasets to produce viable outputs.

In order to ensure that workers had the necessary mashup knowledge, we performed
a selection using gold data. Yet, our questions were too tough in our first tests, and we
had to lower our expectations. What happened with the tough questions was that it was
hard to process the whole dataset and at the same time meet our valid pattern criteria.
Lowering the toughness of the questions allowed us to process the whole dataset and to
obtain more patterns, not all of them of good quality, however, as reported in previous
sections. We also noticed a natural selection phenomenon: the majority of patterns was
submitted by only a few workers. We assume these were workers with good knowledge
in Pipes that simply liked this kind of modeling task and, therefore, submitted multiple
patterns not only for the sake of the reward but also for personal satisfaction.

Despite the selection of workers, it is strongly advised to check all inputs for formal
validity (e.g., no empty strings); otherwise, workers may just skip inputs or input fake
content (e.g., a white space). Our task designs ensure that only correct patterns can be
submitted, yet the difference between submitted and retained patterns (the semantic
check) illustrated in Figure 5 highlights the importance of advanced input validation.

Regarding the robustness of these results against varying reward amounts, we did
not notice any reduction in the number of tasks instantiated by the crowd or the number
of patterns collected if we lowered the reward from USD $0.10 down to USD $0.05 (in
an independent, pilot experiment). Our feeling is that we could have gotten the same
results also for less money without any loss of quality, however, demonstrating this
would require additional, purposefully designed experiments.

We also inspected manually the diversity of collected patterns and noticed a prefer-
ence for complex combinations of components over more naive ones, which results in
a high diversity of patterns. At a more fine-grained detail, however, it is possible to
identify overlapping parts, especially regarding the use of popular pairs of components
(e.g., it is common to see the association of the Fetch Feed and the URL Builder compo-
nents). The inspection of the structure and content of the patterns reveals a preference
for self-contained configurations, able to provide useful functions on their own.

The fairness of the comparison with an algorithm based on support as a measure of
interestingness may be debatable, as such is expected to work poorly on small datasets.
However, this poor performance establishes the triggering condition to look for an
alternative solution, such as crowd-based mining and, thus, represents a baseline.
In addition, the studied scenario is typical in model-driven development paradigms:
it is very rare to find repositories with millions of models where data-mining-based
approaches can take full advantage (e.g., SAP’s reference process model repository,
one of the biggest publicly available, contains only a total of 604 models [Dijkman
et al. 2011]). Perhaps dedicated rule-based systems, instance-based learning, case-
based reasoning, or other automated approaches could allow a fairer comparison, yet
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we were not able to identify any readily available, suitable algorithms and therefore
relied on our previous automated algorithm to understand whether the crowd-based
approach may represent a valid alternative. In any case, automated approaches in the
current state of the literature would still hardly be able to beat humans in providing
rich descriptions for patterns and, what is even harder, useful prescriptions on how to
use them.

5. ASSESSING MODEL PATTERNS

To answer Research Question 2, we focus on the patterns obtained by Naive. We
implemented one expert quality assessment experiment (that serves as the ground
truth) and two crowd quality assessment experiments to validate the patterns.

5.1. Assessment Tasks

The crowd tasks for this experiment consist of questionnaires created within Crowd-
Flower that allow us to visualize the patterns and to collect ratings using multiple-
choice questions. We discuss next the two approaches used for pattern assessment.

5.1.1. Individual Expert/Crowd Assessment. The first task design is shared by both the
Expert assessment and the Individual crowd assessment and aims to test if the crowd
interprets individual patterns similarly to an expert. Each task shows one pattern
(screen shot, name, description, list of tags) and asks for the assessment of its under-
standability, reusability, usefulness, and novelty (we discuss these later in this section)
using a Likert scale (from 1-negative to 5-positive). We also include the preselection
questionnaire already used for the mining tasks, in order to make sure that workers
are knowledgeable in Yahoo! Pipes. Figure 15 in Appendix B shows the task design.

5.1.2. Pairwise Crowd Assessment. This task design implements the PairWise crowd
experiment that aims to study whether it is possible to obtain an overall pattern
ranking similar to the one by the experts. It shows a pair of patterns and asks workers
to identify the one with the highest understandability, reusability, usefulness, and
novelty. Patterns are thus not assessed individually, but in relation to other patterns,
which has proven to help workers make better decisions [Jung and Lease 2011]. To
compute a (partial) ranking, each pattern is given six chances to be voted. The task
again includes the preselection questionnaire used in the previous tasks. See the task
UI design in Figure 16 in Appendix B.

5.2. Experiment Design

Answering the second research question requires again identifying a set of subques-
tions that can be studied in detail. The two questions we want to study in the following
to understand whether the crowd is able to assess the quality of mashup patterns are
as follows:

—Replaceability: does crowd-based quality assessment with Individual and PairWise
produce more similar results than an expert-based assessment?

—Reliability: in crowd assessments collected with Individual and PairWise, is the bias
introduced by misunderstandings, cheaters, or malevolent workers negligible?

In order to answer these questions, we compare the Expert, Individual, and PairWise
assessment approaches using the following data and metrics.

5.2.1. Experiment Design and Dataset. The Expert assessment is done locally on our own
machine; the Individual and PairWise crowd assessments are again implemented on
CrowdFlower. For both crowd tasks we estimated a maximum duration of 300 sec per
task and payed a reward of USD $0.02 per task. The Individual setting asks for exactly
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Fig. 10. Quality assessment results: (a) Individual/Expert ratings, (b) PairWise understandability ranking.

three judgments per pattern, a requirement that is configured in CrowdFlower. The
PairWise setting makes sure that each pattern appears exactly 6 times in different
pair combinations. All tasks use as an input dataset the 42 patterns obtained by Naive.

5.2.2. Metrics and Statistical Tests. We use four criteria to assess the quality of patterns.
The understandability of a pattern refers to how comprehensible the pattern is; a
pattern is understandable if one can easily figure out what the pattern does and how
to use it. The usefulness of a pattern refers to the utility of the pattern, that is, to
how handy and convenient it is to use the pattern for solving a given problem. The
reusability of a pattern is the extent to which the pattern can be used in different
contexts. Finally, the novelty of a pattern refers to how new and innovative the pattern
is. Appendix C discusses examples of good and bad patterns for each of these criteria.

Replaceability: To compare the Expert and Individual assessments, we use Mann-
Whitney’s U test (nonpaired) to test whether they produce comparable ratings. Both
experiments produce ordinal data (Likert scale) that generally do not meet the normal-
ity condition. We further compute Spearman’s correlation coefficient (for paired ordinal
data) for Individual and PairWise against Expert. Finally, we order all patterns in de-
creasing order for each of the three approaches and quality criteria individually and
check the precision (P = T ruePos

T ruePos+FalsePos ) and recall (R = T ruePos
T ruePos+FalseNeg ) of the top-

ranked patterns by Individual and PairWise compared to Expert (the ground truth).
We specifically compute P and R for the 25th, 50th, and 75th percentiles to test different
quality assessment policies (hard vs. soft).

Reliability: We use Fiedman’s analysis of variance to test whether the Individual
ratings provided for each criterion are comparable among each other. The use of this
test is again motivated by the use of the Likert scale for ratings and the nonnormality
of the distribution of the dataset; in addition, since we test a set of criteria that refer
to the same set of patterns and patterns are assessed by the same set of workers, we
cannot assume independence in this test. Spearman’s correlation coefficient provides
further insight into the strength and direction of the associations for each criterion.
For the PairWise assessment, we compare whether there is a bias in the preferences
expressed by the crowd toward either the first or the second pattern shown in the task.
The samples (rankings of first patterns vs. rankings of second patterns) are dependent,
are expressed with ordinal data, and follow a nonsymmetrical distribution. We thus
use the Wilcoxon signed-rank test for this decision. In all statistical tests we use a
significance level of α = 0.05.

5.3. Results

Figures 10 and 11 present the aggregate assessments by Expert and Individual, one of
the pattern rankings obtained by PairWise, and the respective precision/recall charts.
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Fig. 11. Precision and recall of the Individual and PairWise assessment experiments with varying selec-
tivity (top 25th, 50th, and 75th percentiles) for understandability (�), usefulness (�), reusability(	), and
novelty (◦).

Table I. Comparison of Ratings Between Expert and Individual (H0 : ηind = ηexp), and Spearman’s
Correlation Coefficient ρ for Expert Versus Individual and Expert Versus PairWise

Spearman’s Correlation Coefficients ρ

Criteria Mann-Whitney’s test Expert vs. Individual Expert vs. PairWise
Reusability p = 5.787 × 10−9; U = 8029 −0.0783 0.1581
Novelty p = 3.287 × 10−13; U = 8741 0.1212 −0.1017
Usefulness p = 6.392 × 10−10; U = 8197 0.0257 0.1755
Understandability p = 5.744 × 10−4; U = 6870 0.0732 0.1403

Table II. In-Group, Cross-Criteria Spearman’s Correlations for the Expert, I ndividual, and
PairWise Quality Assessments

Spearman’s Correl. Coefficients ρ

Criteria Expert Individual PairWise
Reusability vs. Novelty −0.5452 0.8249 0.8862
Reusability vs. Usefulness 0.5682 0.8520 0.9053
Reusability vs. Understandability 0.6389 0.8319 0.9026
Novelty vs. Usefulness −0.2545 0.7971 0.9503
Novelty vs. Understandability −0.3356 0.8075 0.9485
Usefulness vs. Understandability 0.7978 0.8832 0.9969

We use these and Table I to study replaceability. Tables II and III help us study
reliability.

5.3.1. Replaceability. Two observations can immediately be made from Figure 10(a):
(1) there seems to be an important difference between the average ratings produced
by Expert and Individual, and (2) Individual seems to provide similar ratings for all
criteria. Here, we consider only (1); we leave (2) for the discussion of the reliability
subquestion. We use Mann-Whitney’s U test (nonpaired) with the null hypothesis H0 :
ηind = ηexp (the medians of the two experiments are equal) to test whether experts and
the crowd produce comparable results. The alternative hypothesis is that the medians
are not equal, that is, HA : ηind �= ηexp. The results of the test reported in Table I make
us reject H0 for all four criteria and conclude that the ratings produced by Individual
and Expert are indeed significantly different. A further inspection of the ratings using
Spearman’s correlation (see the third column in Table I) shows that also the pairwise
correlation (per same pattern) of the ratings by Individual and Expert is very low.

The data produced by the PairWise experiment are not directly comparable to the
one by the experts (votes vs. Likert scale rating). We can, however, rank patterns using
the sum of the votes they obtained. Figure 10(b), for instance, plots the pattern ranking
for the understandability criterion (we compute similar rankings for all four criteria).
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Table III. Test of Preference Bias Between Patterns Shown First Versus
Patterns Shown Second in the PairWise Assessment Task

Criteria Wilcoxon Signed Rank Test
Reusability p = 4.922 × 10−7; W = 528
Novelty p = 8.844 × 10−8; W = 666
Usefulness p = 9.910 × 10−8; W = 666
Understandability p = 1.488 × 10−7; W = 630

Now we can compute the pairwise Spearman correlation between PairWise and Expert
(see the last column in Table I). The correlation is very low, and we cannot conclude
that the two experiments produce similar assessments for individual patterns.

If we relax our similarity criteria and only look at the selectivity of the three ex-
periments (“good” vs. “bad” inside the ranked lists of patterns), we can compute the
precision and recall of the two crowd experiments. Figure 11 shows the results obtained
when comparing the top 25th, 50th, and 75th percentiles of the rankings. The results
obtained for the 25th percentile report a mediocre precision; Individual looks more
promising in terms of recall. As we relax the selectivity, the performance increases,
with PairWise outperforming Individual in the 75th percentile. Although these results
appear positive, we do not consider them reliable enough (too few data); for example,
Figure 10(b) shows that the 50th percentile includes 30 patterns out of 42 and the 75th
even 39.

5.3.2. Reliability. Even if the Individual experiment produces assessments that are
different from those by the experts, we would expect ratings to vary across criteria.
Yet, we already pointed out that Individual produces roughly the same ratings for
all criteria. Using Friedman’s analysis of variance and the null hypothesis that the
medians of the ratings are instead the same for all criteria, that is, H0 : ηund = ηuse =
ηreu = ηnov, we obtain a p-value of p = 0.4995 (df = 3, n = 42, χ2 = 2.368). The high p-
value forces us to accept H0 and that the ratings are the same for the different criteria.
This conclusion is reinforced by a further inspection using Spearman’s correlation
(third column of Table II) that shows high correlations (ρ) across criteria.

The design of the PairWise experiment makes sure that each pattern appears exactly
3 times as the first pattern in the task (see Figure 16 in the appendix) and 3 times as
the second. We would thus expect that the votes by the crowd are uniformly distributed
over the pattern appearing first and second.

We use the Wilcoxon signed rank test to test this assumption, using the null hypoth-
esis that for each criterion the median of aggregated votes is the same for the patterns
appearing first and those appearing second, that is, H0 : η1st = η2nd. The alternative
hypothesis is that they are different (HA : η1st �= η2nd). The results are reported in
Table III. We can see that H0 must be rejected for all criteria; that is, we are in the
presence of a bias. Specifically, the crowd consistently preferred the first pattern over
the second. We also compute Spearman’s correlation for the PairWise experiment and
report them in the last column of Table II. The results again show high, positive cross-
criteria correlation coefficients, which contrasts the values obtained for Expert, not
only in strength but also partly in direction.

5.4. Discussion

At first sight, the conclusions of the mining study and those of the quality assessment
study seem to contradict each other. But this is not true: the mining tasks impose
strict requirements for valid patterns, which eliminate most of the noise (i.e., nonvalid
patterns) from feedbacks. This is not possible in the quality assessment study that asks
for opinions (not artifacts) for which there are no clear acceptance criteria. In this case,
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noise (i.e., the assessments produced by nonserious workers) stays in the data and, as
our study shows, prevails over the feedback by the more serious workers.

We note that the quality of the elicited patterns as perceived by the experts is not
extraordinary. Only the understandability is high compared to the other criteria. The
availability of pattern names, descriptions, and tags (which automated algorithms are
not able to produce) surely contributed to this result. We ascribe this mostly to the
small size of the dataset: we cannot expect lots of revolutionary patterns out of 40
pipes (Appendix C discusses examples of good and bad patterns). Using feedback from
only two experts is, however, a limitation of the study, and we would like to involve
additional independent experts or users of Baya in our follow-up studies. It is, however,
also important to note that the perceived average quality of patterns does not yet mean
that patterns are not “good” in practice; eventually, this can only be ascertained by
using them for development. Also, we did not assess the quality of the automatically
mined patterns and are thus not able to say which approach produces better patterns
according to the adopted criteria.

The data collected through our experiments seem to indicate that the crowd works
on a least-effort basis. Their performance strongly depends on the task design. For
instance, in the Individual experiment, workers consistently provide similar ratings
for different criteria. Our intuition is that, given the task design in Figure 15, it is sim-
ply easier for workers to choose one column and then just click vertically through
all criteria. Similarly, in the PairWise experiment, we believe that workers actu-
ally inspected only the first pattern and essentially neglected the second one, very
likely because inspecting two patterns was considered too complex. Also, the use of
gold data to assess workers as proposed by CrowdFlower does not solve the prob-
lem, and even if there was some notion of acceptable or less acceptable opinions
(e.g., a range), checking ranges in Likert scales via gold data questions is not yet
supported.

Regarding the alternatives to the crowd-based assessment of mashup patterns, we
identify two options: involving an expert (expensive) or asking the users of the pat-
terns to rate them (for free). This latter approach we started exploring in Baya [Roy
Chowdhury et al. 2014], where we let users vote on patterns, eliminating the need for
an expert (we also plan to allow them to save and share their own patterns). If an expert
is involved, the general question may be whether it is better to directly ask him or her to
identify high-quality patterns or whether to ask him or her to assess lower-quality pat-
terns by the crowd. An argument in favor of crowd pattern identification is that it likely
produces a better variety of patterns than a single expert and that assessing many
crowd patterns will not cost more than producing few expert patterns. There is not a
single answer to this question and the answer depends on the actual use of the patterns.

6. THREATS TO VALIDITY

This section summarizes the threats that may impose limitations on our findings and
their generalization to other scenarios where patterns are mined with the crowd.

6.1. Task Design

The crowdsourcing platform we use for our experiments (CrowdFlower) allows us to
perform the selection of workers through the use of gold data (to implement questions
whose answers are known and formalized a priori so that they can be checked automat-
ically). This means that worker selection and actual task are seamlessly integrated,
and workers are judged by the platform while they perform the task. The nature of
the task we crowdsource, however, led us to the integration of a preselection question-
naire with the actual task, since it would be very hard to choose a priori patterns from a
pipe to use as gold data. This is of course a threat to the worker selection phase because
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once the worker figures out the right answers for the preselection questionnaire, he or
she can use it over and over without the pressure of having to provide good answers to
the actual task as when gold data was used.

Our experience also shows that using hard questions can be too selective, and repeat-
edly trying possible answers will cause the platform to prematurely exclude workers
from the task. The identification of mashup model patterns in Pipes is clearly a task
that requires specific qualifications from workers that may not be easy to find in
crowdsourcing platforms like CrowdFlower. Indeed, the reports provided by the crowd-
sourcing platform show that only eight workers out of 93 actually managed to pass
the control questions for the Naive algorithm, while for Random3 and ChooseN the
numbers are 21 of 52 and six of 45, respectively; for the Individual assessment exper-
iment, only four workers out of 152 passed our control questions, while for PairWise
it was four out of 41. One potential threat of this is that the results we obtained may
not be reproducible if we do not have the same workers performing our tasks together
in the same period of time. The consequence of this is that we may not get the same
performance or not get any patterns at all. This issue needs to be explored further
in future work, for example, to understand how much the performance varies across
different days of the week or times of the day, as well as with different rewards. The
challenge thus lies in finding the tradeoff between the difficulty of the questionnaire
and the level of expertise of workers, as well as in the postprocessing of the patterns to
verify their quality.

The actual design of our tasks is based on a best effort. We have internally thought
of and analyzed alternative designs based on text-based representation of the models,
abstractions based on graphs, and form-based representations, but the alternative that
resulted most convincingly is the use of screen shots of real pipes that allow workers
to click on individual components to build patterns. Using this representation, we
propose our three task designs with different levels of complexity and information
load to understand what is acceptable for the crowd. The main issue here (which at
the same time was necessary for the comparison) is that in our experiments, we pay
the same reward for task designs of different complexities. The poor performance of
Random3 and ChooseN may thus be explained partially by the low reward offered to
workers for that level of task complexity. Raising the rewards might have produced
results comparable to Naive, but it would probably have made these algorithms even
less cost-effective than they are now. Our findings therefore assume a same reward
policy.

The task design for the assessment of patterns asks for opinions, which are collected
through the mechanisms supported by the crowdsourcing platform: web forms. The
main issue in this case is that opinions using web forms are prone to cheating. The
challenges we face here are similar to those of the task design for collecting patterns:
it is not possible to create gold data for opinions, because a pattern that is good for one
worker may not be as good for another worker. Our findings show that such conditions
and the lack of support by the chosen crowdsourcing platform (and similar ones) for
more sophisticated mechanisms (e.g., an approach based on the games with a purpose
paradigm [Von Ahn 2006]) make the assessment of patterns as proposed in this article
produce results that are significantly different from what a dedicated domain expert
would produce.

6.2. Experimental Setting

Crowdflower and other state-of-the-art crowdsourcing platforms depend on many
configuration parameters including reward, number of answers per task, number of
tasks per job, gold data, success rate (on gold data) for the cutoff threshold, target
countries, target languages, and the day/time when the tasks are launched, among
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other more detailed parameters. In addition, Crowdflower also offers the possibility
to post tasks to third-party crowdsourcing platforms that, in turn, have their own
configuration parameters that are set up internally by Crowdflower and that are
obscure to the work provider. This makes the experimental environment and setting
complex and represents an important threat to the reproducibility of the experiment
(as with all crowdsourcing experiments). In our studies, we make decisions on how to
configure these parameters based on a best effort, and we try to control them whenever
this is possible. We acknowledge that the configuration used for each single parameter
is debatable and each one of these represents a research question that may deserve
an investigation on its own.

6.3. Results and Findings

Our studies confirm that crowdsourcing tasks for marketplace platforms should be kept
simple and straightforward, in line with what has already been reported in contexts
different from ours [Kittur et al. 2008; Mason and Watts 2010]. While at first sight, some
findings may thus not be seen as novel contributions, it is important to interpret them
properly in their specific context: pattern mining. The purpose of the three different
levels of complexity in our studies was, on the one hand, to answer the typical question
the data mining expert would come up with (e.g., “what if you showed more models
to the worker?”) and, on the other hand, to understand which level of complexity
is acceptable. So, the question this article aims to answer is not just if complexity
matters, but what level of complexity. And the answer to this question is anything but
trivial or obvious. Indeed, the results of our experiments show that there is a noticeable
difference in the performance of the crowd. Crowdsourcing is a complex domain, and
each task has its own peculiarities and pitfalls; it is in general not possible to apply
results from other studies straightaway to tasks and task designs in different contexts,
which leads to the need for studies that explore the use of crowdsourcing in different
contexts and scenarios.

To the best of our knowledge, this is the first work investigating the specific problem
of pattern mining from models with the crowd. As such, it is an exploratory study that
unveils where the problems are. And its contribution is exactly this: starting the thread
and showing some techniques that work as well as others that do not. Building on this,
others (or we ourselves) can work on more targeted, task-specific improvements, just
as it happened with many similar task-specific studies in the domain of crowdsourcing
(e.g., data labeling and multimedia quality assessment, among other studies).

7. RELATED WORK

In the area of databases, the current trend is to exploit crowdsourcing to help an-
swer queries that are hard for computers. For example, Parameswaran and Polyzotis
[2011] propose hQuery, a declarative language that allows for the description of query
answering tasks that involve human processors, databases, and external algorithms.
Franklin et al. [2011] propose CrowdDB, an approach to answer database queries
through crowdsourcing. As opposed to the previous work, CrowdDB proposes a modi-
fied version of the standard SQL with annotations at the level of both data definition
language (DDL) and data manipulation language (DML) enabling the crowdsourcing
of database query answering. Marcus et al. [2011] propose Qurk, an on-paper system
managing the workflow of querying relational databases, including tasks like filtering,
aggregation, sorting, and joining of data sources. The idea is rather simple: it proposes
to use standard SQL where the crowd tasks are wrapped into user-defined functions
(UDFs) that contain the concrete task description to be sent to the crowd.

Few works focus on the intersection of crowdsourcing with data mining and ma-
chine learning. The current trend is to use the crowd mostly for pattern recognition,
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classification, and labeling of data items that can be later on used as training examples
for machine-learning algorithms. For example, Li et al. [2012] propose CrowdMine, an
approach that leverages human computation for solving problems in verification and
debugging. This work targets the involvement of nonexperts in solving such problems,
and to do so, the authors propose to abstract the problem through a pattern identifi-
cation game that can be played by any individual of the crowd. In the context of data
preprocessing for machine learning, Sheng et al. [2008] propose a crowd-based approach
for collecting training labels for data items also from nonexpert human labelers for the
use in supervised induction. In particular, the authors consider the repeated labeling
for some or all of the examples in the dataset and their impact on the quality level of
the training examples. In the same line, McCreadie et al. [2010] propose to leverage
crowdsourcing to collect labels for a news dataset. The goal of the work is to produce
a reference dataset that can be used for the evaluation and comparison of approaches
proposed for news query classification. Von Ahn and Dabbish [2004] propose the ESP
game, an interactive system in the form of a game in which players must agree with
other players on the labels that can be associated to images in order to proceed in the
game. Labels can be used later on for improving image search or as training examples.

A common characteristic of the works presented in this section is that they all
target nonexperts that are capable of performing relatively simple tasks. They leverage
on human-innate capabilities such as image identification, text interpretation, and
pattern recognition. The main challenge of these works therefore is the translation
of the original task (e.g., image classification or database query answering) to task
descriptions and visual metaphors that are in the reach of these types of workers.
Our approach is slightly different and more similar to the one proposed by Stolee and
Elbaum [2010], in that we target workers that have a minimum knowledge of Yahoo!
Pipes. Eliciting from the crowd artifacts as complex as model patterns has not yet been
studied before.

The quality of mashups and mashup patterns has been studied in the past few
years. Cappiello et al. [2012] study the composition of mashups by taking into ac-
count different quality dimensions such as the syntactic and semantic compatibility
of components, aggregated quality of the mashup, and added value in terms of data,
functions, and visualization. These quality dimensions are considered in the context
of delivering recommendations for building mashups. Janner et al. [2009] present five
different mashup patterns for enterprise mashups that enable cross-organizational
collaboration. The authors highlight the requirements imposed by enterprise mashups
in terms of security, availability, governance, and quality, which need to be taken into
account by mashup patterns in the context of enterprises. Cappiello et al. [2010] ad-
dress the issue of information quality in mashups. Here, the authors argue that the
quality of mashups and mashup patterns strongly depends on the quality of the in-
formation that different components can provide, and that other quality aspects such
as maintainability, reliability, and scalability play a minor role because mashups are
used only for a short time. In our work, we are rather concerned with quality aspects
such as the functionality, reliability, and (re)usability of the mashup patterns as inves-
tigated by Cappiello et al. [2011] or the composability, openness, and encapsulation as
defined by Kohls [2011]. Kohls also discusses the intrinsic subjectivity and the diffi-
culty of agreeing on patterns, two factors all pattern identification approaches have in
common.

Whether the crowd can be used to assess the quality of model patterns has not been
investigated before, to the best of our knowledge. Several studies on how to use the
crowd to assess the quality of other kinds of artifacts, though, exist, with diverging
conclusions. Keimel et al. [2012], for instance, study the problem of assessing the
quality of videos with the crowd and conclude that the crowd produces similar results
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to traditional lab tests. Khattak and Salleb-Aouissi [2011] study the performance of the
crowd in labeling tasks; they conclude that “injecting a little expertise [expert-provided
labels] in the labeling process will significantly improve the accuracy of the labeling
task.” Instead, Gillick and Liu [2010] demonstrate that “non-expert judges are not able
to recover system rankings derived from experts” for more complex text summarization
assessments. These results are in line with our finding: the higher the complexity of
the task is, the lower the reliability of the crowd assessment. In fact, the first work asks
workers only to provide a rank (mouse input), the second to write labels (text input),
and the third to read a longer text and two summaries and to rate them (conceptual
effort plus mouse input).

8. CONCLUSION

This article studies two research questions: The first question is whether the crowd is
able to discover reusable mashup model patterns from a dataset of 40 models using
micro-task designs that provide different levels of visibility into the available dataset
(one/three/10 models). The different levels of visibility aim to enable the crowd to spot
repetitions of patterns in the dataset, similar to how automated algorithms proceed.
The finding is that the crowd is indeed able to identify patterns that are meaningful
and rich in domain knowledge (Naive), but also that more visibility into the dataset is
actually counterproductive (Random3 and ChooseN) and that support is not needed if
humans are asked to identify patterns. The second question is whether it is possible
to crowdsource the quality assessment of identified patterns. The finding is that with
the two task designs we implemented, Individual and PairWise, we are not able to
reproduce assessments that are close to those given by experts. We cannot exclude
that other task designs produce better results; our results, however, show that further
experiments are needed to study how to simplify the task to make it more accessible,
how to incentivize workers, and how to check the skills of workers and the reliability
of opinions.

In our future work, we would like to study how to further simplify our tasks, if
crowdsourcing can be leveraged also for big datasets, for example, by introducing pat-
tern similarity metrics, or whether the quality of patterns changes if no reward is
given at all. A complementary technique to collect and rate patterns could be ask-
ing developers themselves to identify and rate patterns, for example, directly inside
their modeling environment. We already implemented this idea in our pattern recom-
mender for Yahoo! Pipes, Baya, which allows one to save patterns and to up-/down-
vote patterns (https://www.youtube.com/watch?v=AL0i4ONCUmQ). Collecting usage
data will allow us to understand if and where real users perform better than the
crowd.
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