
Composition Patterns in Data Flow Based Mashups
Soudip Roy Chowdhury, Aliaksandr Birukou, Florian Daniel, and Fabio Casati

University of Trento, Via Sommarive 5, 38123 Povo (TN), Italy
{rchowdhury,birukou,daniel,casati}@disi.unitn.it

ABSTRACT
Recently, mashup tools have emerged as popular end-user
development platform. Composition languages used in mashup
tools provide ways (drag-and-drop based visual metaphor for
programming) to integrate data from multiple data sources in
order to develop situational applications. However this
integration task often requires substantial technical expertise from
the developers in order to use basic composition blocks properly
in their composition logic. Reusing of existing composition
knowledge is one of the possible solutions to ease mashup
development process. This reusable composition knowledge can
be harvested from composition patterns that have occurred
frequently in previously developed mashup. In order to
understand composition patterns in mashups, particularly in data
flow based mashups, in this paper, we have analyzed the
composition language used by one of the most popular data-flow
based mashup tools, Yahoo! Pipes. Based upon our analysis we
have identified six composition patterns, which represent most
commonly used composition steps during mashup application
development. To prove the generality of the identified patterns in
data-flow based mashup composition languages, we have further
shown the applicability of our composition patterns in several
other popular data-flow based mashup tools.

Keywords
composition pattern, mashup, data mining, end-user development

1. INTRODUCTION
Recent efforts in end-user development (EUD) focus on enabling
domain experts, i.e. business experts who are not typically IT
experts to participate in the application development process.
Mashup development [6] is particularly in-line with this EUD
methodology. Mashup development is conceptualized with a view
that domain experts could develop “situational application” to
cater their immediate business needs without having IT experts in
the development loop. Development supports (e.g. visual
metaphors like dragging, dropping and connecting visual
components instead of writing programs etc.) are provided by the
development environment to ease the development process.
However these supports are still not sufficient to ease EUD.
Developing an application using these development environments
requires end-users either to tailor the existing solutions or to
create a new solution as per the new requirements. This task
involves understanding and defining the complex data flow logic
between the components in an application [5]; although this is not
a typical skill that an end-user possesses.

The use of the patterns to capture the frequently occurring
development styles and insights in computer/software systems
design [7,8] is not a new idea. In our approach, we explore the
mashup development scenario to identify the potential mashup
development patterns, which can be useful to the developers
(novice or expert) while defining their composition correctly. We
also think that mashup platform providers will benefit from our

analysis. This analysis of patterns will help them to understand the
mashup composition paradigms in a better way. This will also
help them to identify what are the functionalities they could
provide in the composition language in order to support end-user
development. In this paper we have restricted our analysis only to
data-flow based mashup composition logic. The patterns, which
are discussed in this paper, may not be readily applicable to other
composition languages (e.g. control flow based) and may require
further refactoring.

Michael Ogrinz et al. [2] have identified 34 different types of
mashup patterns classified mainly into 5 main categories for data-
flow based applications. The patterns, as presented in this paper,
are derived by analyzing the functional and structural aspects of
enterprise mashup applications. In our approach, as described in
[1], we, however, want to explore the composition patterns in
mashups, which are derived by analyzing the frequently occurring
development steps (mashup composition models) in existing
mashup applications.

The pattern descriptions in this paper are targeted at both novice
and experienced mashup application developers. Novices may
choose to treat these patterns as suggestions to be tried and to be
applied in their applications. Whereas, experts can use these
patterns definitions as a form of checklist, in order to identify
them in their application definitions. Experts can further store the
definition of the identified composition-pattern in a repository
(composition knowledge base) in order to make them reusable by
the end-users (domain experts, non-technical users) during their
development tasks.

The structure of this paper is as follows; in the next section we
explain the development steps that a developer has to follow in
order to develop a simple application in a data flow based mashup
tool like Yahoo! Pipes. Based upon the scenario, we analyze the
mashup composition paradigm and introduce the composition
patterns in section 3. In section 4, we show our effort to apply the
identified patterns of section 3 in other data mashup platforms. In
Section 5, we finally conclude our discussion with possible future
work directions.

2. EXAMPLE SCENARIO
In this section, with the help of a use-case implementation
scenario in Yahoo! Pipes, we have tried to explain the
composition steps that a developer has to follow while developing
a mashup application in a tool like Yahoo! Pipes. The example
scenario is described as follow:
Carlos is a sports lover and an active blogger. He uses his
personal blog to post sports related latest news, articles, videos
and updates from different media sources like ESPN sports.
Keeping his blog updated with the latest news, requires him to do
lot of manual works like content aggregation, filtering and
publishing etc. To automate this repetitive and time-consuming
job, Carlos intends to use Yahoo! Pipes mashup environment and
composition language to create an application, that fetches news
feed from ESPN sports, extracts only the content related to soccer

news, lists the news with their corresponding headlines and
aggregates similar news under the same headline for better
readability purpose.

Figure 1 Implementation of the example scenario in Yahoo!

Pipes.

The pipe that implements the required feature is illustrated in
Figure 1. It is composed of five components: The Fetch Feed is
required to get the news article from the publishing website as
mentioned by its URL parameter. The URL address for ESPN
news is feed://rss.soccernet.com/c/668/f/8493/index.rss. The next
component is a container Loop, which embeds another component
Fetch Page inside it. Fetch Page Component retrieves the
selective page content (Cut content from parameter is used as a
content selection criteria over the HTML content of the page)
from the links as mentioned in item.link field of the output coming
out of Fetch Feed component. Loop component runs over every
feed item and invokes the Fetch Page component. It also assigns
the output of the Fetch Page component to the item.description
field. Unique component is used for merging the content of the
similar news, based upon their title description (item.title).
Finally, the Pipe Output component specifies the end of the pipe.

3. COMPOSTION PATTERNS
Before we discuss about the development patterns in detail, let us
first define the preliminaries of a data-flow based mashup
application.
A mashup Μ is a tuple, M = <N, C, T, O>

Where
N- denotes the name of a mashup application.
C - {c1, c2…cn} denotes set of components in an application.
T is a tuple, defined as T =<V, E> denotes the data mapping
function between connected components.
Where

V – {L1,L2,…LK} denotes set of pair of components which are
connected via connectors between them.
Such that L1 – (c1, c2), L2 - (c1, c3), … LK -(cK-1, cK),
E – {eL1 …eLK} denotes set of connectors that can be used for
connecting pair of components in V.
O – denotes the output of a mashup application.
Further, a component C can be defined as a tuple.
C = < I, R, Q >
Where
 I - {P1, P2, … PN} denotes the set of configuration parameters
(Input) that a component can have.
R - {Ai} denotes set of attribute values for the parameters of a
component. Given a component ci, and the set of configuration
parameters I, the attribute values that elements of I hold in a
mashup, is denoted by the elements of the set R:{Ai}, where i =
1..N , denotes the index of the parameters. An attribute value can
be provided by the developer explicitly or can be assigned with
the value of the output of another component in the development
canvas.
Q – denotes the output value for the component ci.
In the light of the above formalization, let us now define
composition patterns that we can identify and extract from a
mashup application as explained in section 2.

3.1 Frequent Parameter Value
• Description: Frequent parameter value captures a set,

consisting of possible value assignments for a parameter of a
component that have been used frequently in the past
compositions. The parameter value can be assigned with an
explicit user-specified string value (as shown in Figure 1,
URL parameter of Fetch Feed component) or can be assigned
with the output value of another component in the current
composition (as shown in Figure 2) via a connector pipe. By
analyzing the past successful compositions we can identify
the frequent itemsets, which capture the value assignments
for a given parameter of a component. Frequent value-
assignment itemsets along with associated component, and
composition context information are captured and stored as
data-pattern.

• Example:
The Fetch Feed component as shown in figure 2, has an URL
parameter. URL is assigned with the output value of another
component. In this example the output of an URL Input
component, as shown in the right-top end of Figure2,
provides the value to the URL parameter of Fetch Feed. This
value assignment can be captured in frequent parameter
value.

Figure 2 Example of Frequent Parameter Value

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EuroPLoP’11, July 13–17, 2011,Bavaria, Germany

• Problem: There may be many possible value options, for the
parameter value assignments for a component, remembering
all of them are difficult for the developer. Human errors
(type mismatch, wrong value assignment etc) in specifying
the parameter value lead to erroneous result of the data-flow.
Also these types of errors are harder to detect at later stage of
the composition design. Learning from the examples of past
applications and use it in the current composition takes time
and expertise.

• Forces:
o The value can be provided manually as a string

value or can be provided by assigning output of
another component to the given parameter value
field.

o In case of assigning the input parameter value of a
component by the output of another component, it
is essential to know which of the components can
provide the required input value to be assigned to
the parameter. In case of explicit type casting is
required for the input parameter value, the
developer also needs to know how to do the
provisioning (e.g., using filter components to filter
out few attributes from the output parameter) in
order to make the composition work.

o Type mismatch is typical problem that arises
during parameter value assignment. Due to this
when the output of one component is assigned to
configuration parameters of another, more care is
required to avoid the problem of type mismatch.

• Solution: To solve the problems as mentioned above, we
capture and store the frequent value assignments information
for the parameters of a component along with the associated
composition context information. Given a component ci and
its parameter Pi, we can identify the possible value
assignments for Pi i.e. {<Pi,A1>,<Pi,A2>..<Pi,An>}, which
have occurred frequently in the past successful compositions.
We identify these patterns from the existing composition
models stored in the mashup repository and by applying
data-mining algorithm (association rule mining). We store
the extracted pattern information in our pattern repository to
analyze the best practices and common usage of patterns.

• Consequences:
o One component may have multiple parameters and

multiple parameters can have many possible
values, capturing and storing all the possible values
is memory intensive tasks.

o Frequently used value set doesn’t always represent
the possible set of values. Hence at time when the
user wants to know information about the whole
set of possible values this approach may not be
useful.

3.2 Associated Parameters Value
• Description: Associated Parameters value pattern captures

the information related to the value assignments for all the
associated parameters for a component. Given a parameter of
a component is assigned with a specific value, this pattern
captures how the remaining parameters of the selected
component are assigned with values. Association rules
capturing the relationship and assignments of parameters

with their corresponding values for a component along with
their support and confidence metric are stored in associated
parameter value pattern.

• Example:
As shown in the Figure 3, the value of the parameter Cut
content from and the subsequent Split using delimiter are
determined by the value of the parameter URL of Fetch
Page. Hence we can say that there exists an association
relation between the other parameter values of Fetch Page,
given the value of URL parameter.

• Description: Associated Parameters value pattern captures
the information related to the value assignments for all the
associated parameters for a component. Given a parameter of
a component is assigned with a specific value, it captures
how the remaining parameters of the selected component are
assigned with values from a set of possible values for them.
Association rules capturing the relationship and assignments
of parameters with their corresponding values for a
component along with their support and confidence metric
are stored in parameter value association.

• Example:
As shown in the Figure 3, the value of the parameter Cut
content from and the subsequent Split using delimiter are
determined by the value of the parameter URL of Fetch
Page. Hence we can say that there exists an association
relation between the other parameter values of Fetch Page,
given the value of URL parameter.

Figure 3 Example of Associated Parameters Value

• Context: A selected component has more than one parameter

(e.g. input parameter, configuration parameter, and output
parameters). User has filled a few of the parameters with
their corresponding value assignment and further he wants to
assign values for the rest of the parameters of the selected
component.

• Problem: The problems that a user may face in order to fill
up the values for the rest of the parameters, given a few of
the parameter values are filled, are due to the fact that there
could be many valid options for the parameter value
assignments. The assignments of parameters with their
corresponding values require the users to know the internal
data-flow logic of the composition. This task is not a trivial
one, especially the users who do not have enough exposures
on service composition and mashup tools, may find it
difficult to set these values.

• Forces:
o As the values of the parameters are associated, the

values of subsequent parameters are dependent on
the values of the preceding parameters. For
example selection of URL parameter value in
Figure 3, determines the possible value options for
the subsequent parameters (cut content from, Split
using delimiter etc).

o Type mismatch during the value assignment is
another typical problem that arises during the value
assignment for the parameters of a component.
Knowing the proper type information is not very
trivial for the developer who does not have enough
exposure on mashup tools and also do not have the
prior knowledge about the application’s data-flow
logic.

• Solution: Therefore, to solve the problem as described above
we need to identify and store the association relation
information between the value assignments for the
parameters of a component. Given a component ci has N
parameters (P1,P2,….PN),if the parameter value assignments
{(P1, A1),(P2,A2)…(PK,AK)…(PN,AN)} are found to be the
most frequent from the past successful compositions. Then
we can infer the association rule {(P1,A1),(P2,A2)…(Pk,AK)}
{(PK+1, AK+1)…(PN,AN)} i.e. given P1 is assigned with A1,
P2 with A2 and PK is assigned with AK etc implies Pk+1 will be
assigned with AK+1 and similarly PN will be assigned with
AN. Association rules, containing the parameter value
assignments along with the information of the corresponding
component, and composition context reference, are stored as
parameter value association in the composition knowledge
base. This association information is significant in helping
the users to fill the parameters with proper values for a given
component in a given composition context mitigating the risk
of type mismatch and selecting from multiple options
without having enough technical insight about the
composition.

• Consequences:
The consequences are similar to the consequences as
mentioned for parameter value pattern.

3.3 Components Co-occurrence
• Description: Components co-occurrence, captures the

information in terms of given a component selected what are
the other components that can co-exist in a given
composition context.

• Example:
Components co-occurrence captures the information about
what are the components that may occur together in a given
composition context. In the example as shown in Figure 4,
component co-occurrence captures the set of components
{Fetch Feed, Loop, Fetch Page, Unique}, given the fact that
these components occurred together frequently in the
previous successful compositions.

• Context: User wants to proceed or complete his current
composition design by adding a new component/s in his
composition model in the development canvas.

• Problem: In the presence of a large database of mashup
components, selecting proper component/s that can be used
together with the components already existing in the user
specified composition design model, is not an easy task for
the developer who do not posses sufficient IT knowledge.
Learning from the examples of past applications and use it in
the current composition requires time and expertise.

• Forces:
o From a database of n different mashup

components, the number of possible way that k
number of components can be chosen for the

mashup design is nk , in the worst-case scenario.
For a less IT skilled developer choosing the best
possible option of component out of nk is not an
easy task.

Figure 4 Example of Components Co-occurrence

o For defining a consistent mashup, not only the co-

existence of components in a given composition
context but also their inter-dependencies (proper
mapping of parameter value from one component
to another in order to make the data-flow consistent
etc.) have to be defined properly. Developers using
such mashup platforms must have the background
knowledge about how to satisfy these criteria while
defining the data-flow logic for a mashup
application.

o Making a simple mistake in the intermediate steps
during the mashup design may lead the whole
application to become erroneous. At the later stage
of the development, identifying such mistakes,
which have occurred in the earlier steps, become
difficult.

• Solution: Therefore, the components co-occurrence captures
the association information of a component or a set of
components with the associated set of components with their
corresponding support and confidence value to be appeared
together in an application. Given a set of components
S={ci,,ci+1 ,…,cN} are present in the current development
canvas, we can find the set of other components Y={cj, cj+1

..cM}, such that (S,Y) occurred together in the previous
successful compositions and the following conditions satisfy;
S,Y ∈C also S, ∩ Y = ∅. The elements in this association
rule captures the set of components, which have frequently
co-occurred together in the past successful compositions and
also the components ({ccurrent}) in the current development
canvas is a subset of either S or Y, i.e., ccurrent ⊂ S or ccurrent ⊂
Y. While the support value captures the statistical measures
of how many times in the past compositions (S,Y) occurred
together, the confidence value signifies the probability of
occurring Y given any elements of S is present in the
composition context. Components that satisfy a certain
threshold value of support and confidence are captured and
stored in a list that stores the co-occurrence (S,Y)
information of the components in a mashup composition
knowledge repository. This knowledge may be significant in

understanding the possible options for components, which
the user may use in his composition.

• Consequences:
o This pattern captures the information about the

number of components co-occurred in a
composition.

o But this pattern doesn’t capture the information
about how those components are connected with
each other. In other words how the data flows
between the components.

3.4 Data-mapping
• Description: Data-mapping captures the most frequent

dataflow logic definition which consists of components in the
current composition, i.e., how in the past compositions the
output attribute of one of the existing component is
connected via connector to the input parameter of another
component/s in the given composition context. Data can be
mapped between one component’s output to another
component’s default input or it can be mapped between one
component’s output to another components’ configuration
parameter.

• Example:
In a data-flow based composition scenario, as we have
described in this paper, the data-mapping can happen
between one component’s output to another component’s
default input as shown in Figure 5b or between one
component’s output to another’s configuration parameter as
shown in Figure 5a.

• Context: A user wants to connect one component with
another component in the composition by defining proper
data mapping between the output attribute/s of one
component to the input parameter on another.

Figure 5a

Figure 5b

Figure 5 Examples of Data-mapping patterns

• Problem: Defining the proper data-mapping logic requires

developer to know the technical details about the data-flow
logic. If the user makes a mistake in defining the data-
mapping logic between the components then the whole
composition logic becomes erroneous.

• Forces:
o A user needs to know the type information of the

input parameters for the target component as well
as the type information for the output parameter of
the source component. The type of these two
parameters must match for the data mapping
between the components.

o When the output of one component is used as an
input parameter value by more than one
component, then the type of the output of the
source component must match with the input of all
the target components.

o Mapping a specific value from the output set of a
component to the input parameter value of another
component, for example in Figure 5b, the mapping
of item.link from the output list Item of Fetch Feed
component to the URL parameter of Fetch Page is
another data-mapping example. However we can
observe in this example that knowing this kind of
finer mapping details involves technical knowledge
as well as knowledge on the data-flow logic.

o Learning the possible relevant options from the
previous application examples is not very easy for
the end-users. Also this learning process requires
time and expertise.

• Solution: To solve the problem as explained above, in data-
mapping, we capture the association rule capturing the
information about how the output of one component (source
component) are mapped to the input parameter
(configuration parameter) value of another component
(Target component). The data-mapping information is
captured in terms of association rules between the parameter
values of the components. Let us assume, for a given pair of
components (ci ,ci+1), output object qi of ci (Source
Component) is mapped to configuration parameter Pj of ci+1
(Target Component). Furthermore let us assume that qi
contains set of N values as {ß1,ß2 ….ßN} and out of that a
subset { ßj,…ßK }, where 1<=i and K<=N, can be mapped to
Pi , in a given composition context. The association relation
that captures the relation of {{ci,qi[ßj,…ßK]} {ci+1, Pj }} with
corresponding support and confidence value is stored as
data-mapping.

• Consequences:
o Given two components this pattern will help users

to know in how many ways they can be connected
with each other via data-mapping.

o If the number of components increases, the
possible options for their data mapping with each
other increase. The viable options for the possible
data mappings also become exponentially high.

3.5 Associated Composition Fragments
• Description: Associated Composition Fragment captures the

association information between two composition fragments.

In other words, given a partial composition definition in the
current development canvas, associated composition
fragment captures the association information between the
current partial compositions with the associated components/
composition fragment, which can be used to auto-complete
or to extend the current composition definition. Associated
Composition Fragment consists of set of connected
components that have been frequently used together in
previous successful applications. This pattern contains partial
compositions definition consisting of multiple components,
connectors with proper parameter value and data mapping
setting.

• Example: For instance in Figure 6, the combination of Filter-
Fetch Page embedded inside Loop – Unique component
together is an example of Associated Composition Fragment.
Given Fetch Feed component is selected and its URL
parameter is filled with a specific value as shown in the
Figure 6, Associated Composition Fragment captures the
knowledge that the combination of Filter- Fetch Page
embedded inside Loop – Unique component together is the
most frequently used fragment which can be connected to
Fetch Feed component.

• Context: when a user selects a component in the
development canvas, and he wants to complete his partial
composition definition with fragment consisting of several
components connected via connectors with proper data-
mapping set among the components etc.

• Problem: Completing a mashup composition definition with
components, connector and data mapping, requires users to
know the internal data flow logic of the application, input
and output parameters and their type information for all the
constituent components. If the mashup platform contains
many components and if the components can have many
possible ways to be connected with each other, then the
complexity of defining a proper mashup composition
becomes exponentially huge. Even a small mistake while
selecting a component or filling the parameter value or
defining the data mapping logic during the intermediate steps
can lead to an erroneous mashup application definition.

• Forces:
o The number of possible ways that a mashup

composition can be defined is many. Knowing all
of these possible options for defining a proper
mashup application is difficult for the end-users.
Especially when the mashup application is
considerably large, for each of the components and
connections user needs know the information
regarding the parameter values, data mapping logic
etc. Knowing all of them is not a trivial task for a
less skilled developer or end-users for instance.

o Learning the possible options of the intermediate
steps from the previous application examples
requires time and expertise.

o As for the large mashup application designing
making mistake in defining any of the intermediate
steps may become difficult to debug at the later
stage.

Figure 6 Example of Associated Composition Fragments

(containing component/s, connector/s as a part of meaningful
compositions)

• Solution: To solve the problem as explained above,

associated composition fragment could be used for auto-
completing the partial composition definition. Past successful
application fragments, which were frequently used and well-
tested in similar composition, context, can be used for auto-
completing the partial mashup definition fast. Associated
composition fragment can be used for this purpose.
Associated composition fragment can capture the
information such as, given the existing composition
definition in the development canvas, the set of frequently
occurring partial composition instances, which can be used to
auto-complete or extend the definition of the existing
composition in the development panel. Let us assume
Mexisting = < Cexisting, Texisting, O > denotes the existing partial
composition in the development canvas, where O= ∅ and
Cexisting={ci} is the set of components present in the current
partial composition such that i=1..N. Texisting is the set of data
mapping function which connects the components in C.
Also assume Mfragment= < Cfragment, Tfragment, O > is a partial
composition where O may or may not be ∅. Mfragment can be
associated with the existing composition in the development
canvas to complete the composition definition such that
(Mexisting ∪ Mfragment) = M <N, C, T, O>; where M is
consistent. If O = ∅ then we say that the associated fragment
is used for extending the definition of Mexisting, otherwise
associated fragment auto-completes Mexisting. Given Mexisting,
, associated fragment pattern captures the association rules
(Mexisting {Mfragment }) such that {Mfragment} contains set of
fragments with their corresponding support and confidence
values. For each of the elements of the set {Mfragment} there
exists a at least one connection between qi and Pj, where qi is
the output of a component ci and cj ∈ Mexisting and Pi is the
input parameter of a component cj and cj ∈ Mfragment. Using
standard data mining technique e.g., association rule mining
etc we can identify and mine frequently occurring
composition fragments sets from the past successful
compositions and can store these knowledge in our
knowledge-base. This knowledge if provided as development
recommendation, can be helpful in automating the
composition task and can be used to leverage faster
development and maximum reuse of existing composition

knowledge in order to help end-users in their composition
tasks.

• Consequences:
o Associated composition fragment pattern is

basically a union of one or more patterns as
described before.

 However if the developer wishes to know the final composition
model instead of knowing the constituent blocks individually, this
pattern can be useful in that scenario.

4. DISCUSSION
For the sake of the simplicity of our analysis, in this paper we
have considered Yahoo! Pipes, as a reference data-flow based
mashup development environment. Yahoo! Pipes provides a
simple visual drag-and-drop metaphor for application
development instead of writing code. Based upon the meta-model
of Yahoo Pipes as introduced in [1] and composition language
provided by the platform, we have identified six types of
composition patterns as shown in the previous section. However
to verify the applicability of these composition patterns in all the
data-mashup domains, we have further explored other popular
data mashup platforms e.g. Presto Wires1 and MyCocktail2. To
anticipate our analysis on these platforms, we have developed
applications in these platforms which implement similar/same
scenario as described in Section 2 (as shown in Figure 8 and
Figure 9 [Appendix A]). During our analysis of the development
steps in these platforms, we could successfully map all the
identified composition patterns to the corresponding composition
languages as provided by these tools. Based upon our
observations, we can hence infer that the 6 composition patterns,
as described in this paper can well represent different composition
aspects supported by the composition languages that are used for
data-flow based mashup development.
In our research approach in WIsdom AwaRE (WIRE) computing
[1], we aim at developing an assisted mashup development
platform. In WIRE we provide development recommendations
during development about the next possible composition steps
based upon user actions and partial composition information, with
a view that by following the recommendations the users can
successfully define their mashup applications. The patterns as
discussed in this paper can be a good base for providing
development recommendations at different levels of abstraction.
We claim that development recommendations on next component,
connector, or the possible value set for a given parameter etc
which are derived from the composition patterns are more useful
to the users during their development tasks. To verify this claim
recently we have performed a user study [9] with 10 non-IT
administrators of a university. The result of the study reveals the
fact that the end-user indeed would like to receive development
assistance at different levels of granularity during development.
The end-users also expressed their concerns about the existing
assisted development platforms, which by auto-completing the
partial composition provide little or no room for the end-users to
have control over the intermediate steps. However the assistance,
which is harvested from the patterns, as discussed in this paper
will provide them more control over the intermediate steps. We
claim that development recommendations on next component,
connector, or the possible value set for a given parameter etc are

1 http://www.jackbe.com/products/wires.php
2 http://www.ict-romulus.eu/MyCocktail/

more useful to an end-user than auto-completion. We also claim
that these sets of recommendations will help users to learn about
how to define the composition logic in their application. In our
approach in WIRE we aim at deriving development
recommendations from the community composition knowledge,
which is again captured from the composition patterns that
occurred frequently in past successful compositions. The
composition patterns, as discussed in this paper, can be discovered
by applying data-mining techniques on the existing composition
models. In WIRE in particular, we want to explore and extend the
standard data mining techniques like frequent itemsets,
association rule mining etc for discovering the patterns from the
existing composition logs. However we also realize that in case of
incomplete or uncertain data these pattern-mining techniques may
not work properly. In future work we will direct our research
efforts in order to tackle the challenges related to data mining in
the presence of incomplete/uncertain data.
The composition patterns in this paper will be helpful in
understanding and knowing which composition knowledge are
important and are required to be captured as patterns in order to
provide them as useful development recommendations. In our
future work we will further explore to analyze the contexts under
which certain composition patterns can be recommended during
the development process.

5. LITERATURE REVIEW
The idea of developing large-scale applications by composing
coarse grained, reusable component modules has been well
established by [12]. A similar, approach has been proposed in the
parallel computing domain [13]. In this case, sequential
procedures are composed into a parallel structure using a control
flow based graphical notation, where the data flow is derived
implicitly by matching parameter names [14], later these parallel
structures are reused as knowledge. In the past, there have also
been many approaches, which had tried to tackle the problem of
extending visual data flow languages with iteration constructs
[10]. An example of iteration through vector operators and
conditional switches is described in [11]. The main drawback of
these approaches is, the patterns only capture the structural
behavior of the composition, that too only the variation points
(join, split etc), the association between the data sources,
relationship of data sources with data flow logic are not captured
in these approaches. In our approach as described in this paper,
instead of only capturing the iterative structure in a composition,
we capture the composition steps, which have occurred frequently
over the past successful compositions. The composition patterns
as described in this paper capture the iterative structural patterns
implicitly along with other related information about the data-flow
logic. Hence we can say that the patterns as discussed in this
paper are more complete and useful in capturing the composition
knowledge in visual programming like mashup development
paradigm.

6. Conclusion
In this paper we discussed about the mashup composition patterns,
which can be identified during mashup application development.
By analyzing the contexts, problems and the factors related to
different composition steps, we have identified and formalized
five mashup composition patterns. To validate the generality of
these patterns, we have further explored the mashup composition
languages of other data mashup platforms. The result of this
experiment shows the applicability and generality of the identified
composition patterns in data-flow based mashup platforms. In this

paper, however, we have restricted our analysis to only data
mashup platforms. However this set of composition patterns may
not be exhaustive. In “Process mashup” we may have different
set of representative patterns, which require further research
efforts and analysis. In our future work we will analyze the meta-
model of such process flow based mashup composition languages
and will try to map or extend these composition patterns to
support both data-flow based and process-flow based mashup
developments.

7. ACKNOWLEDGMENTS
We convey our sincere thanks to our shepherd Christian Kohls for
his constructive and supportive help during the shepherding
process in order to improve the quality of the patterns and the
paper. We would also like to thank Kristian Sorensen, from
EuroPLoP 2011 program committee, for his extended help and
support during the shepherding process. This work is supported by
the funds from European Commission (project OMELETTE,
contract no. 257635).

8. REFERENCES
[1] Soudip Roy Chowdhury, Carlos Rodríguez, Florian Daniel

and Fabio Casati. Wisdom-Aware Computing: On the
Interactive Recommendation of Composition Knowledge.
Proceedings of WESOA 2010, December 2010, Springer.

[2] Michael Ogrinz. 2009. Mashup Patterns: Designs and
Examples for the Modern Enterprise (1 ed.). Addison-
Wesley Professional.

[3] Florian Daniel, Agnes Koschmider, Tobias Nestler, Marcus
Roy, Abdallah Namoun. Toward Process Mashups: Key
Ingredients and Open Research Challenges. Proceedings of
Mashups 2010, December 2010, ACM

[4] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and L.
Yan. From People to Services to UI: Distributed
Orchestration of User Interfaces. In Proceedings of BPM’10,
pages 310–326., 2010.

[5] David E. Simmen, Mehmet Altinel, Volker Markl, Sriram
Padmanabhan, and Ashutosh Singh. 2008. Damia: data
mashups for intranet applications. In Proceedings of the 2008
ACM SIGMOD international conference on Management of
data (SIGMOD '08). ACM, New York, NY, USA, 1171-
1182.

[6] Jeffrey Wong and Jason I. Hong. 2007. Making mashups
with marmite: towards end-user programming for the web. In
Proceedings of the SIGCHI conference on Human factors in
computing systems (CHI '07). ACM, New York, NY, USA,
1435-1444

[7] Martin Fowler. 1996. Analysis Patterns: Reusable Objects
Models. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA

[8] Colette Rolland and Naveen Prakash. 1993. Reusable
Process Chunks. In Proceedings of the 4th International
Conference on Database and Expert Systems Applications
(DDEXA '93), Springer-Verlag, London, UK, 655-666.

[9] De Angeli, Antonella and Battocchi, Alberto and Roy
Chowdhury, Soudip and Rodriguez, Carlos and Daniel,
Florian and Casati, Fabio (2011) Conceptual Design and
Evaluation of WIRE: A Wisdom-Aware EUD Tool.
Technical Report DISI-11-353, Ingegneria e Scienza
dell'Informazione, University of Trento.

[10] Mosconi, M. and Porta, M. Iteration constructs in data-flow
visual programming languages. In Proceedings of Comput.
Lang. 2000, 67-104.

[11] M. Auguston and A. Delgado. Iterative constructs in the
visual data flow lan- guage. In G. Tortora, editor,
Proceedings of the 1997 IEEE Symposium on Visual
Languages (VL97), pages 152–159, Capri, Italy, September
1997

[12] G. Wiederhold, P. Wegner, and S. Ceri. Towards mega
programming: A paradigm for component-based
programming. Communications of the ACM, 35(11):89–99,
1992

[13] J. C. Browne, S. I. Hyder, J. Dongarra, K. Moore, and P.
Newton. Visual programming and debugging for parallel
computing. IEEE parallel and distributed technology:
systems and applications, 3(1):75–83, Spring 1995 .

[14] V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek.
1994. The PVM concurrent computing system: evolution,
experiences, and trends. Parallel Comput. 20, 4 (April 1994),
531-545

Appendix A

Figure 7 Composition Patterns in Presto Wires

Figure 7 shows an implementation of a simple mashup application in Presto Wires platform. This mashup consists of 6
components. In this example Direct Invoke components (GetNewsFeedFromCNNSoccer,GetNewsFeedFromESPNSoccer,
GetNewsFeedFromYahooSoccer) fetch rss-feeds from URLs of the websites as mentioned in the Resource Link parameter
value. Merge component then merges the feeds based upon the condition specified in its configuration. Finally Filter
component filters the merged data based upon the conditions specified by the developer (shown as Block:Filter
Configuration setting in Figure 7) and provides the filtered data to the Mashup Output component. Mapping of composition
patterns, as discussed in this paper, to the composition language of Presto Wires validates the applicability of five
composition patterns in other data flow based mashup composition language as well. To further support this claim we tried to
map these five composition patterns to MyCocktail, another data flow based mashup platform. Figure 8 shows an
implementation of the mashup scenario as described in section 2 by using MyCocktail mashup builder. This application can
also be viewed at this link (http://www.ict-romulus.eu/MyCocktail/#107). This mashup consists of 4 components. The first
component in this composition is Fetch RSS service, which fetches the soccer news from the URL as specified in RSS url
parameter. The next component Iterate, iterates through all the items in the input list and stores them in a temporary array
iterate. Count component counts the elements of an array based upon some property value of array elements. In this example
the elements are counted by the property id. Finally UI component List Renderer is used for rendering the news in the
temporary array. In this example scenario as shown in Figure 8, we can see how the composition patterns, as defined in this
paper, can be mapped to the composition language of MyCocktail.

Figure 8 Composition Patterns in MyCocktail Mashup Builder

