
Online Appendix to:
Recommendation and Weaving of Reusable Mashup Model Patterns
for Assisted Development

SOUDIP ROY CHOWDHURY, INRIA Saclay
FLORIAN DANIEL and FABIO CASATI, University of Trento

This online appendix contains the following.
(1) Figure 9
(2) Algorithms 4 & 5
(3) Tables I, II, III, and IV

A. PATTERN KNOWLEDGE BASE STRUCTURE

Figure 9 illustrates the structure of the pattern KB. The schema enables fast retrieval
of all the patterns defined in Section 3.2 with a one-shot query over a single table. The
KB is partly redundant (e.g., the MultiComponent entity also contains components and
connectors; we explain the details in Section 4.2), but this is intentional. It allows us to
avoid expensive database join operations at recommendation time and to defer them to
when a pattern must be woven. For example, in order to retrieve the representation of
a component co-occurrence pattern, it is enough to query the ComponentCooccur entity
for the SourceComponent and the TargetComponent attributes; only weaving the pat-
tern then requires querying ComponentCooccur �� DataMapping �� ParameterValues
for the necessary details.

B. RECOMMENDING PATTERNS

In the following, we describe in more detail the two algorithms to retrieve personal-
ized recommendations and expert recommendations, as introduced in Section 4.3 and
Section 4.4, respectively.

B.1. Personalized Recommendations Algorithm

Algorithm 4 shows how we use the inferred user-item rating matrix R′ to retrieve
personalized recommendations. R′ is precomputed offline and, together with the user
identifier uid, constitues a new input compared to Algorithm 2. In essence, we retrieve
all similar patterns using getPatterns (line 2) and then, for each pattern, we sum the
personal component ratings encoded in R′ of all components of the pattern (lines 4–6),
normalize the sum by the number of components (line 7), and keep those patterns that
exceed the ranking threshold value Trank (lines 8 and 9).

B.2. Expert Recommendations Algorithm

Algorithm 5 is very similar to Algorithm 4 with two key differences: instead of the
inferred user-item matrix R′, it uses the expert-item rating matrix E, and it is inde-
pendent of any particular user identifier uid.

C. PATTERN WEAVING

C.1. Mashup Operations

Table I lists all mashup operations identified for dataflow-based mashup environments
like Yahoo! Pipes. Mashup operations can be combined in a scripting-like fashion to

c© 2014 ACM 1533-5399/2014/10-ART21 $15.00
DOI: http://dx.doi.org/10.1145/2663500

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

App–2 S. Roy Chowdhury et al.

Fig. 9. Knowledge base structure for storage and retrieval of mashup model patterns.

ALGORITHM 4: getPesonalizedRecommendations
Data: q = 〈object, action, pm〉, KB, OAR, CompSim, Tsim, Trank, k for top-k threshold, user id uid, inferred user-item

rating matrix R′
Result: Recommendations R = [〈cpi , ranki〉] with ranki ≥ Trank

1 R = array();
2 Patterns = getPatterns(q, KB, OAR, CompSim, Tsim) ; // retrieve patterns
3 foreach pat ∈ Patterns do
4 personalRank = 0; // initialize personal rating
5 foreach component ∈ pat do
6 personalRank+= getComponentRating(R′, component, uid); // sum individual, personal ratings

7 personalRank = personalRank/|pat|; // normalize by number of components in pattern
8 if personalRank ≥ Trank then
9 append(R, 〈pat.cp, personalRank〉); // rank, threshold, remember

10 OrderGroupTruncate(R, k);
11 return R;

ALGORITHM 5: getExpertRecommendations
Data: q = 〈object, action, pm〉, KB, OAR, CompSim, Tsim, Trank, k for top-k threshold, expert-item rating matrix E
Result: Recommendations R = [〈cpi , ranki〉] with ranki ≥ Trank

1 R = array();
2 Patterns = getPatterns(q, KB, OAR, CompSim, Tsim) ; // retrieve patterns
3 foreach pat ∈ Patterns do
4 expertRank = 0; // initialize expert rating
5 foreach component ∈ pat do
6 expertRank += getComponentRating(E, component); // sum individual expert ratings

7 expertRank = expertRank/|pat|; // normalize by number of components in pattern
8 if expertRank ≥ Trank then
9 append(R, 〈pat.cp, expertRank〉); // rank, threshold, remember

10 OrderGroupTruncate(R, k);
11 return R;

instruct the pattern weaver as to how to emulate modeling actions inside the modeling
canvas so as to weave a given pattern cp into a partial mashup model pm.

C.2. Basic Weaving Strategy

Table II illustrates the basic weaving strategies for the five identified mashup pattern
types, along with the assumptions regarding the object of the query that triggered the
recommendation of the pattern. We recall that the basic weaving strategy tells which
modeling actions to apply so as to expand the object into the chosen pattern cp.

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Recommendation and Weaving of Reusable Mashup Model Patterns App–3

Table I. Dataflow-Based Mashup Operations for the Definition of Weaving Strategies

addComponent(ctype) → cid′: produces a pm′ with a new component of type ctype added to pm; the operation returns
cid′, i.e., the identifier of the newly created component.

deleteComponent(cid): produces pm′ with the component identified by cid and all references to it or elements thereof
(e.g., connectors with other components, data mappings) deleted from pm.

assignValues(cid, V A): produces pm′ with the value assignments VA added to component cid.

deleteAllValues(cid): produces pm′ with all input parameters of component cid emptied.

deleteValue(cid, in): produces pm′ with the input parameter in for component cid emptied.

addConnector(dfxy): produces pm′ with the output port opx of the component with identifier cidx connected to the
input port iny of the component identified by cidy (remember dfxy = 〈cidx, opx, cidy, ipy〉).
deleteConnector(dfxy): produces pm′ with data flow dfxy and the possible data mapping defined in the target component
deleted from pm.

assignDataMappings(cid, DM): produces pm′ with a data mapping DM for component cid.

deleteAllDataMappings(cid): produces pm′ with data mappings deleted from component cid.

deleteDataMapping(cid, in): produces pm′ with the data mapping for the input parameter in deleted from the compo-
nent identified by cid.

embedComponent(hostid, embid): produces pm′ with the component with identifier embid embedded in the component
with identifier hostid.

Table II. Function getBasicStrategy(cp, object) → BS

Object Basic Strategy

Parameter value pattern ptypepar

comp with comp.type=c.type assignValues(comp.id, V A);

Connector pattern ptypecon

compx, compy with
compx .type=cx .type and
compy.type=cy.type

addConnector(compx .id, cx .op, compy.id, cy.ip);
assignDataMappings(compy.id, cy.DM);

Component co-occurence pattern ptypecom

compx with
compx .type= cx .type

$newcid=addComponent(cy.type);
addConnector(〈compx .id, cx .op, $newcid, cy.ip〉);
assignDataMapping($newcid, cy.DM);
assignValues(compx .id, cx .V A);
assignValues($newcid, cy.V A);

Component embedding pattern ptypeemb

compx, compy, dfxy with
compx .type= cx .type and
compy.type = cy.type

$embcid=addComponent(cz.type);
addConnector(〈compx .id, cx .op, $embcid, cz.ip〉);
addConnector(〈$embcid, cz.op, compy.id, cy.ip〉);
embedComponent(compy.id, $embcid);
assignDataMappings(compy.id, cy.DM);
assignDataMappings($embcid, cz.DM);
assignValues(compx .id, cx .V A);
assignValues(compy.id, cy.V A);
assignValues($embcid, cz.V A);

Multi-component pattern ptypemul

comp with
comp.type ∈ Types(C)

∀ci ∈ (C − {comp}) $newcid[i] = addComponent(ci .type);
compidx = i with ci .type=comp.type;
$newcid[compidx] = comp.id;
∀ f xy ∈ DF addConnector(〈$newcid[srccid], srcop, $newcid[tgtcid], tgtip〉);
∀i ∈ $newcid assignDataMappings($newcid[i], ci .DM);
∀i ∈ $newcid assignValues($newcid[i], ci .V A);

C.3. Conflict Resolution Policies

During weaving, we are in the presence of a conflict if we want to add a new construct
to the partial mashup model pm, but the partial mashup model already contains this
construct. The hard conflict resolution policy (Table III) resolves the conflict by creat-
ing and using a new construct of the same type, whereas the soft conflict resolution

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

App–4 S. Roy Chowdhury et al.

Table III. Hard Conflict Resolution Policy resolveConflict(pm, instr) → CtxInstr

Basic instruction instr Conflict with pm Contextual instr. CtxInstr

assignValues(cid, V A); We want to apply only the new value assign-
ment, independently of existing assignments.

deleteAllValues(cid);
assignValues(cid, V A);

addConnector(dfxy); The connector dfxy already exists. —

addConnector(dfxy); A connector dfzy �= dfxy to ipy of dfxy already
exists, and iny allows only one input connector.

deleteConnector(dfzy);
addConnector(dfxy);

$var=addComponent(ctype); A component comp of type ctype already exists,
and we don’t reuse existing components.

$var=addComponent(ctype);

assignDataMappings(cid,
DM)

We want to apply only the new data mapping to
the component.

deleteAllDataMappings(cid);
assignDataMappings(cid, DM);

embedComponent(hostid,
embid);

A component with identifier oldid has already
been embedded into the component hostid.

deleteComponent(oldid);
embedComponent(hostid, embid);

Table IV. Soft Conflict Resolution Policy resolveConflict(pm, instr) → CtxInstr

Basic instruction instr Conflict with pm Contextual instr. CtxInstr

assignValues(cid, V A); We want to preserve possible value assignments,
if they are not in conflict with any of the values
in V A.

assignValues(cid, V A);

addConnector(dfxy); The connector dfxy already exists. —

addConnector(dfxy); A connector dfzy �= dfxy from a component compz
to the same input port ipy of dfxy already exists,
and iny allows only one connector in input.

deleteConnector(dfzy);
addConnector(dfxy);

$var=addComponent(ctype); A component comp of type ctype already exists,
and we want to reuse existing components.

$var=comp.id;

assignDataMappings(cid,
DM)

We want to preserve possible data mappings
data are not in conflict with the data mappings
in DM.

assignDataMappings(cid, DM);

embedComponent(hostid,
embid);

A component with identifier oldid has already
been embedded into the component hostid.

deleteComponent(oldid);
embedComponent(hostid, embid);

policy (Table IV) aims to maximize reuse and therefore reemploys the already existing
component when weaving the pattern.

C.4. Weaving Example

Let’s see a concrete example of how the contextual weaving strategy is built, starting
from the basic strategy, the conflict resolution policy, the partial mashup model, and
the pattern to be woven. We use the modeling situation illustrated in Figure 1. Let
us assume that the modeler’s last modeling action was placing the Fetch Feed compo-
nent and connecting it with the output of the URL Builder component. Let us further
assume that, among the recommended patterns, the modeler accepts a component co-
occurrence pattern that suggests to add a Filter component after the existing Fetch
Feed component. Applying this pattern to the partial model in the canvas requires:
(i) adding a new Filter component, (ii) connecting the Filter component with the output
of the Fetch Feed component, (iii) applying the data mapping stored in the pattern
to the newly created Filter component, (iv) resolving the conflict among the values of
the “URL” parameter of the Fetch Feed component in the partial mashup and in the
pattern, and (v) assigning parameter values to the Filter component.

Using Algorithm 3 produces the contextual weaving strategy and shown in Figure 10
that resembles the modeling steps described before in terms of the basic mashup
operations introduced in Table I. Line 1 adds the new Filter component and stores the
respective identifier in the variable $newcid. Line 2 connects the new component to
the Fetch Feed component. In order to do so, the pattern weaver retrieves the id of
the Fetch Feed component from the JSON representation of the partial mashup model
(in our test with Yahoo! Pipes, this specifically produced the id “sw-100”; for different

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Recommendation and Weaving of Reusable Mashup Model Patterns App–5

Fig. 10. Contextual weaving strategy weaving a pattern into a partial mashup model.

runs, this identifier will change) and invokes the function addConnector, passing the
id “sw-100”, the type of the output port “ OUTPUT” for Fetch Feed, the id of the newly
created Filter component, and the type of the respective input port (“ INPUT”). The
output and input port types are stored in the pattern and replaced with their ids at
runtime. Line 3 assigns the data mappings to the Filter component in the form of
three name-value pairs. The name identifies the input field (e.g., “conf.Rule[0].field”),
while the value is the data mapping (e.g., “item.description”). Both values are stored
in the pattern. Lines 4 and 5 assign the value to the “URL” parameter (identified
internally via “conf.URL”) of the Filter component. Actually, the two lines are the
result of the resolution of a conflict. The conflict resolver expands the assignValues
function described in Table III, first by deleting the old value and then by assigning
the new one. Incidentally, in our example the old and new values are the same, but
this is not true in general. Finally, line 6 applies the value assignments to the Filter
component and the pattern is successfully woven into the partial mashup model in the
canvas.

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

