

Wisdom-Aware Computing: On the Interactive
Recommendation of Composition Knowledge

Soudip Roy Chowdhury, Carlos Rodríguez, Florian Daniel and Fabio Casati
University of Trento, Via Sommarive 14, 38123 Povo (TN), Italy

{rchowdhury,crodriguez,daniel,casati}@disi.unitn.it

Abstract. We propose to enable and facilitate the development of service-based
development by exploiting community composition knowledge, i.e., knowledge
that can be harvested from existing, successful mashups or service composi-
tions defined by other and possibly more skilled developers (the community or
crowd) in a same domain. Such knowledge can be used to assist less skilled de-
velopers in defining a composition they need, allowing them to go beyond their
individual capabilities. The assistance comes in the form of interactive advice,
as we aim at supporting developers while they are defining their composition
logic, and it adjusts to the skill level of the developer. In this paper we specifi-
cally focus on the case of process-oriented, mashup-like applications, yet the
proposed concepts and approach can be generalized and also applied to generic
algorithms and procedures.

1 Introduction

Although each of us develops and executes various procedures in our daily life (ex-
amples range from cooking recipes to low-level programming code), today very little
is done to support others, possibly less skilled developers (or, in the extreme case,
even end users) in developing their own. Basically, there are two main approaches to
enable less skilled people to “develop”: either development is eased by simplifying it
(e.g., by limiting the expressive power of a development language) or it is facilitated
by reusing knowledge (e.g., by copying and pasting from existing algorithms).

Among the simplification approaches, the workflow and BPM community was
one of the first to claim that the abstraction of business processes into tasks and con-
trol flows would allow also the less skilled users to define own processes, however
with little success. Then, with the advent of web services and the service-oriented
architecture (SOA), the web service community substituted tasks with services, yet it
also didn’t succeed in enabling less skilled developers to compose services. Recently,
web mashups added user interfaces to the composition problem and again claimed to
target also end users, but mashup development is still a challenge for skilled develop-
ers. While these attempts were aimed at simplifying technologies, the human com-
puter interaction community has researched on end user development approaching the
problem from the user interface perspective. The result is simple applications that are
specific to a very limited domain, e.g., an interactive game for children, with typically
little support for more complex applications.

As for what regards capturing and reusing knowledge, in IT reuse typically
comes in the form of program libraries, services, or program templates (such as gener-
ics in Java or process templates in workflows). In essence, what is done today is either
providing building blocks that can be composed to achieve a goal, or providing the
entire composition (the algorithm – possibly made generic if templates are used),
which may or may not suit a developer’s needs. In the nineties and early 2000s, AI
planning [1] and automated, goal-oriented compositions (e.g., as in [2]) became popu-
lar in research. A typical goal there is to derive a service composition from a given
goal and a set of components and composition rules. Despite the large body of inter-
esting research, this thread failed to produce widely applicable results, likely because
the goal is very ambitious and because assumptions on the semantic richness and
consistency of component descriptions are rarely met in practice. Other attempts to
extract knowledge are, for example, oriented at identifying social networks of people
[3] or at providing rankings and recommendations of objects, from web pages (Goo-
gle’s Pagerank) to goods (Amazon’s recommendations). An alternative approach is
followed by expert recommender systems [4], which, instead of identifying knowl-
edge, aim at identifying knowledge holders (the experts), based on their code produc-
tion and social involvement.

In this paper, we describe WIRE, a WIsdom-awaRE development environment we
are currently developing in order to enable less skilled developers to perform also
complex development tasks. We particularly target process-oriented, mashup-like
applications, whose development and execution can be provided as a service via the
Web and whose internals are characterized by relatively simple composition logic and
relatively complex tasks or components. This class of programs seems to provide both
the benefit of (relative) simplicity and a sufficient information base (thanks to the
reuse of components) to learn and reuse programming/service composition knowl-
edge. The idea is to learn from existing compositions (or, in general, computations)
and to provide the learned knowledge in form of interactive advice to developers
while they are composing their own application in a visual editor. The aim is both to
allow developers to go beyond their own development capabilities and to speed up the
overall development process, joining the benefits of both simplification and reuse.

Next, we discuss a state of the art composition scenario and we show that it is eve-
rything but trivial. In Section 3, we discuss the state of the art in assisted composition.
In Section 4 and 5, we investigate the idea of composition advices and provide our
first implementation ideas, respectively. Then we conclude the paper and outline our
future work.

2 Example Scenario and Research Challenges

In order to better understand the problem we want to address, let’s have a look at how
a mashup is, for instance, composed in Yahoo! Pipes (http://pipes.yahoo.com/pipes/),
one of the most well-known mashup platforms as of today. Let’s assume we want to
develop a simple pipe that sources a set of news from Google News, filters them ac-
cording to a predefined filter condition (in our case, we want to search for news on
products and services by a given vendor), and locates them on a Yahoo! Map.

Figure 1 Implementation of the example scenario in Yahoo! Pipes

The pipe that implements the required feature is illustrated in Figure 1. It is com-
posed of five components: The URL Builder is needed to set up the remote Geo
Names service, which takes a news RSS feed as an input, analyzes its content, and
inserts geo-coordinates, i.e., longitude and latitude, into each news item (where possi-
ble). Doing so requires setting some parameters: Base=http://ws.geonames.org, Path
elements=rssToGeoRSS, and Query parameters=FeedUrl:news.google.com/news?
topic=t&output=rss&ned=us. The so created URL is fed into the Fetch Feed compo-
nent, which loads the geo-enriched news feed. In order to filter out the news items we
are really interested in, we need to use the Filter component, which requires the set-
ting of proper filter conditions via the Rules input field. Feeding the filtered feed into
the Location Extractor component causes Pipes to plot the news items on a Yahoo!
Map. Finally, the Pipe Output component specifies the end of the pipe.

If we analyze the development steps above, we can easily understand that develop-
ing even such a simple composition is out of the reach of people without program-
ming knowledge. Understanding which components are needed and how they are
used is neither trivial nor intuitive. The URL Builder, for example, requires the setting
of some complex parameters. Then, components need to be suitably connected, in
order to support the data flow from one component to another, and output parameters
must be mapped to input parameters. But more importantly, plotting news onto a map
requires knowing that this can be done by first enriching a feed with geo-coordinates,
then fetching the actual feed, and only then the map is ready to plot the items.

Enabling non-expert developers to compose a pipe like the above requires telling
(or teaching) them the necessary knowledge. In WIRE, we aim to do so by providing
non-expert developers with interactive development advices for composition, inside

an assisted development environment. We want to obtain the knowledge to provide
advices by extracting, abstracting, and reusing compositional knowledge from exist-
ing compositions (in the scenario above, pipes) that contain community knowledge,
best practices, and proven patterns. That is, in WIRE we aim at bringing the wisdom of
the crowd (possibly even a small crowd if we are reusing knowledge within a com-
pany) in defining compositions when they are both defined by an individual (where
the crowd supports an individual) or by a community (where the crowd supports so-
cial computing, i.e., itself in defining its own algorithms). The final goal is to move
towards a new frontier of knowledge reuse, i.e., reuse of computational knowledge.

Doing so requires approaching a set of challenges that are non-trivial:
1. First of all, identifying the types of advices that can be given and the right times

when they can be given: depending on the complexity and expressive power of
the composition language, there can be a huge variety of possible advices. Un-
derstanding which of them are useful is crucial to limit complexity.

2. Discovering computational knowledge: how do we harvest development
knowledge from the crowd, that is, from a set of existing compositions?
Knowledge may come in a variety of different forms: component or service
compatibilities, data mappings, co-occurrence of components, design patterns,
evolution operations, and so on.

3. Representing and storing knowledge: once identified, how do we represent and
store knowledge in a way that allows easy querying and retrieval for reuse?

4. Searching and retrieving knowledge: given a partial program specification un-
der development, how do we enable the querying of the knowledge space and
the identification of the most suitable and useful advice to provide to the devel-
oper, in order to really assist him?

5. Reusing knowledge: given an advice for development, how do we (re)use the
identified knowledge in the program under development? We need to be able to
“weave” it into the partial specification in a way that is correct and executable,
so as to provide concrete benefits to the developer.

In this paper, we specifically focus on the first challenge and we provide our first
ideas on the second challenge and on the assisted development environment.

3 State of the Art

In literature, there are approaches that aim at similar goals as WIRE, yet they mainly
focus on the retrieval and reuse of composition knowledge. In [6], for instance, mash-
lets (the elements to be composed) are represented via their inputs and outputs, and
glue patterns are represented as graphs of connections among them; reuse comes in
the form of auto-completion of missing components and connections, selected by the
user from a ranked list of top-k recommendations obtained starting from the mashlets
used in the mashup. In [8], light-weight semantic annotations for services, feeds, and
data flows are used to support a text-based search for data mashups, which are actu-
ally generated in an automated, goal-oriented fashion using AI planning (the search
tags are the goals); generated data processing pipes can be used as is or further edited.
The approach in [9] semantically annotates portlets, web apps, widgets, or Java beans

and supports the search for functionally equivalent or matching components; reuse is
supported by a semantics-aided, automated connection of components. Also the ap-
proach in [10] is based on a simple, semantic description of information sources
(name, formal inputs [allowed ones], actual inputs [outputs consumed from other
sources], outputs) and mashups (compositions of information sources), which can be
queried with a partial mashup specification in order identify goals based on their
likelihood to appear in the final mashup; goals are fed to a semantic matcher and an
AI planner, which complete the partial mashup. This last approach is the only one that
also automatically discovers some form of knowledge in terms of popularity of out-
puts in existing mashup specifications (used to compute the likelihoods of goals).

In the context of business process modeling, there are also some works with similar
goals as ours. For instance, in [7], the authors more specifically focus on business
processes represented as Petri nets with textual descriptions, which are processed
(also leveraging WordNet) to derive a set of descriptive tags that can be used for
search of processes or parts thereof; reuse is supported via copy and paste of results
into the modeling canvas. The work presented in [13] proposes an approach for sup-
porting process modeling through object-sensitive action patterns, where these pat-
terns are derived from a repository of process models using techniques from associa-
tion rule learning, taking into consideration not only actions (tasks), but also the busi-
ness objects to which these actions are related. Finally, [14] presents a model for the
reuse data mining processes by extending the CRISP-DM process [15]. The proposed
model aims at including data mining process patterns into CRISP-DM and to guide
the specialization and application of such patterns to concrete processes, rather than
actually exploiting the community knowledge.

In general, the discovery of community composition knowledge is not ap-
proached by the works above (or they do it in a limited way, e.g., by deriving only
behavioral patterns from process definitions). Typically, they start from an annotated
representation of mashups and components and query them for functional compatibil-
ities and data mappings, improving the quality of search results via semantics, which
are explicit and predefined. WIRE, instead, specifically focuses on the elicitation and
collection of crowd wisdom, i.e., composition knowledge that derives from the ways
other people have solved similar composition problems in the past and that has a
significant support in terms of number of times it has been adopted. This means that
in order to create knowledge for WIRE, we do not need any expert developer or do-
main specialist that writes and maintains explicit composition rules or logics; knowl-
edge is instead harvested from how people compose their very own applications,
without requiring them to provide additional meta-data or descriptions (which typi-
cally doesn’t work in practice).

4 Wisdom-Aware Development: Concepts and Principles

Identifying which advices can be provided and which advices do indeed have the
potential to help less skilled developers to perform complex development tasks re-
quires, first of all, understanding the expressive power of the composition language at
hand. We approach this task next. Then we focus on the advices.

4.1 Expressiveness of the Composition Language

Let us consider again Yahoo! Pipes. The platform has a very advanced and pleasant
user interface for drag-and-drop development of data mashups and supports the com-
position of also relatively complex processing logics. Yet, the strong point of Pipes is
its data flow based composition paradigm, which is very effective and requires only a
limited set of modeling constructs. As already explained in the introduction, con-
straining the expressive power of composition languages is one of the techniques to
simplify development, and Pipes shares this characteristic with most of today’s
mashup platforms.

Figure 2 A meta-model for Yahoo! Pipes’ composition language

In order to better understand the expressiveness of Yahoo! Pipes, in Figure 2 we
derived a meta-model for its composition language. A Pipe is composed of compo-
nents and connectors. Components have a name and a description and may be
grouped into categories (e.g., source components, user input components, etc.). Each
pipe contains always one Pipe Output component, i.e., a special component that de-
notes the end of data flow logic or the end of the application. A component may be
embedded into another component; for example components (except user inputs and
operators) can be embedded inside a Loop Operator component. Components may
also have a set of parameters. A Parameter has a name, a type, and may have a value
assigned to it. There are basically three types of parameters: input parameters (accept
data flows attributes), output parameters (produce data flow attributes), and configu-
ration parameters (are manually set by the developer). For instance, in our example in
Section 2, the URL parameter of the Fetch Feed component is an input parameter; the
longitude and latitude attributes of the RSS feed fetched by the Fetch Feed compo-
nent are output parameters; and the Base parameter of the URL Builder component is
an example of configuration parameter.

Data flows in Pipes are modeled via dedicated connectors. A Connector propagates
output parameters of one component (indicated in Figure 2 by the from relationship)
to either another component or to an individual input field of another component. If a
connector is connected to a whole component (e.g., in the case of the connector from

the Fetch Feed component to the Filter component in Figure 1), all attributes of the
RSS item flowing through the connector can be used to set the values of the target
component’s input parameters. If a connector is connected only to a single input pa-
rameter, the data flow’s attributes are available only to set the value of the target input
parameter. Input parameters are of two types: either they are fixed inputs, for which
there are predefined default mappings, or they are free inputs, for which the user can
provide a value or choose which flow attribute to use. That is, for free inputs it is
possible to specify a simple attribute-parameter data mapping logic.

Figure 2 shows that Yahoo! Pipes’ meta-model is indeed very simple: only 10
concepts suffice to model its composition features. Of course, the focus of Pipes is on
data mashups, and there is no need for complex web services or user interfaces, two
features that are instead present in our own mashup platform, i.e., mashArt [5]. Yet,
despite these two additions, mashArt’s meta-model only requires 13 concepts. If in-
stead we look at the BPMN modeling notation for business processes [11], we already
need more than 20 concepts to characterize its expressive power, and the meta-model
of BPEL [12] has almost 60 concepts! Of course, the higher the complexity of the
language, the more difficult it is to identify and reuse composition knowledge.

4.2 Advising Composition Knowledge

Given the meta-model of the composition language for which we want to provide
composition advices, it is possible to identify which concrete compositional knowl-
edge can be extracted from existing compositions (e.g., pipes). The gray boxes in the
conceptual model in Figure 3 illustrate the result of our analysis. The figure identifies
the key entities and relationships needed to provide composition advices.

An Advice provides composition knowledge in form of composition patterns. An
advice can be to complete a given pattern (given it’s partial implementation in the
modeling canvas) or to substitute a pattern with a similar one, or the advice can high-
light compatible elements in the modeling canvas or filter and rank advices.

Patterns represent the actual recommendation that we deliver to the user. They can
be of five types (all these patterns can be identified in the model in Figure 3):
• Parameter Value Patterns: Possible values for a given parameter. For instance,

in the URL Builder component the Base parameter value in a pattern can be set
to “http://ws.geonames.org”, while the Path elements parameter value can be
“rssToGeoRSS”, and feedUrl can be “news.google.com/news?topic=t&output
=rss&ned=us”, as shown in our example scenario. Alternatively, we can have
the URL Builder component with the Base parameter set to “news.google.
com/news” and the Query parameters set with different values.

• Component Association Patterns: Co-occurrence patterns for pairs of compo-
nents. For instance, in our scenario, whenever a user drags and drops the URL
Builder on the design canvas, a possible advice derived from a component as-
sociation pattern can be to include in the composition the Fetch Feed compo-
nent and connect it to the URL Builder.

• Connector Patterns: Component-component or component-input parameter
patterns. This pattern captures the dataflow logic, i.e., how components are

connected via connector elements. For example, URL Builder – connector-
Fetch Feed is a connector pattern in our example scenario.

• Data Mapping Patterns: Associations of outputs to inputs. In Figure 1, for in-
stance, we map the description, title, and y:title attributes of the fetched feed to
the first input field of the first, second, and third rule, respectively, telling the
Filter component how we map the individual attributes in input to the individ-
ual, free input parameters of the component.

• Complex Patterns: Partial compositions consisting of multiple components,
connectors, and parameter settings. In our example scenario, different combi-
nations of components and connectors, having their parameter values set and
with proper data mappings, as a part and as a whole represent complex pat-
terns. For example, the configuration URL Builder – Fetch Feed – Filter – Lo-
cation Extractor, along with their settings, represents a complex pattern.

Figure 3 Conceptual model of WIRE’s advice approach. Gray entities model the ingredients
for advices; white boxes model the advice triggering logic inside the design environment.

An Advice provides composition knowledge in form of composition patterns. An
advice can be to complete a given pattern (given it’s partial implementation in the
modeling canvas) or to substitute a pattern with a similar one, or the advice can high-
light compatible elements in the modeling canvas or filter and rank advices.

Patterns represent the actual recommendation that we would like to deliver to the
user. They can be of five different types: Complex Patterns (partial compositions
possibly consisting of multiple components, connectors, and parameter settings),
Parameter Value Patterns (possible values for a given parameter), Component Asso-
ciation Patterns (co-occurrence patterns for pairs of components), Connector Patterns
(component-component or component-input parameter patterns), and Data Mapping
Patterns (associations of outputs to inputs).

Now, let us discuss the “white part” of the model. This part represents the entities
that jointly define the conditions under which advices can be triggered. A Trigger for
an advice is defined by an object, an action of the user in the modeling canvas, and
the state of the current composition, i.e., the partial composition in the modeling can-

vas. This association can be thought of as a triplet that defines the triggering condi-
tion. The Objects a user may operate are Composition Fragments (e.g., a selection of
a subset of the pipe in the canvas), individual Components, Connectors, or Parame-
ters (by interacting with the respective graphical input fields). The Action represents
the action that the user may perform on an object during composition. We identify
seven actions: Select (e.g., a composition fragment or a connector), Drag (e.g., a
component or a connector endpoint), Drop, Connect, Fill (a parameter value), Delete,
and Embed (one component into another). Finally, the Partial Composition represents
the status of the current overall composition.

While the object therefore identifies which advice may be of interest to the user,
the action decides when the advice can be given, and the state filters out advices that
are not compatible with the current partial composition (e.g., if the Location Extractor
component has already been used, recommending its use becomes useless).

Regarding the model in Figure 3, not all associations may be needed in practice.
For instance, not all components are compatible with the embed action. Yet, the
model identifies precisely which advices can be given and when.

5 The WIRE Platform

Figure 4 illustrates the high-level architecture of the assisted development environ-
ment with which we aim at supporting wisdom-aware development according to the
model described in the previous section: developers can design their applications in a
wisdom-aware development environment, which is composed of an interactive re-
commender (for development advice) and an offline recommender as well as the wis-
dom-aware editor implementing the interactive development paradigm. Compositions
or mashups are stored in a compositions repository and can be executed in a dedicated
runtime environment, which generates execution data. Compositions and execution
data are the input for the knowledge/advice extractor, which finds the repeated and
useful patterns in them and stores them as development and evolution advice in the
advice repository. Then, the recommenders provide them as interactive advices
through its query interface upon the current context and triggers of the user’s devel-
opment environment. Here, we specifically focused on development advices related to
composition; we will approach evolution advices in our future work (evolution ad-
vices will, for instance, take into account performance criteria or evolutions applied
by developers over time on their own mashups).

We realize that each domain will have suitable languages and execution engines,
such as a mashup engine or a scientific workflow engine. Our goal is not to compete
with these, but to define mechanism to “WIRE” these languages and tools with the
ability to extract knowledge and provide advice. For this reason, in this paper we
started with studying the case of Yahoo! Pipes, which is well known and allows us to
easily explain our ideas. We however intend to apply the wisdom-aware development
paradigm to our own mashup editor, mashArt [5], which features a universal compo-
sition paradigm user interface components, application logic, and data web services, a
development paradigm that is similar in complexity to that of Pipes.

Figure 4 High-level architecture of the envisioned system for wisdom-aware development

As for the reuse of knowledge, the WIRE approach is not based on semantic an-
notations, matching, or AI planning techniques, nor do we aim at automated or goal-
driven composition or at identifying semantic similarity among services. We also do
not aim at having developers tag components or add metadata to let others better
reuse services, processes, or fragments. In other words, we aim at collecting knowl-
edge implicitly, as we believe that otherwise we would face an easier wisdom extrac-
tion problem but end up with a solution that in practice does not work because people
do not bother to add the necessary metadata. WIRE will rather leverage on statistical
data analysis techniques and data mining as means to extract knowledge from the
available information space. To do so, we propose the following core steps:

1. Cleaning, integration, and transformation: We take as input previous composi-
tions and execution data and prepare them for the analysis.

2. Statistical data analysis and data mining: On the resulting data, we apply statis-
tical data analysis and data mining techniques, which may include mining of
frequent patterns, association rules, correlations, classification and cluster analy-
sis. The results of this step are used to create the composition patterns.

3. Evaluation and ranking of advices (knowledge): Once we have discovered the
potential advices, we evaluate and rank them using standard interestingness
measures (e.g., support and confidence) and ranking algorithms.

4. Presentation of advices: The advices are presented to the user through intuitive
visual metaphors that are suitable to the context and purpose of the advice.

5. Gathering of user feedback: The popularity of advices is gathered and measured
in order to better rank them.

Among the techniques we are applying for the discovery tasks, we are specifically
leveraging on data mining approaches, such as frequent itemset mining, association
rules learning, sequential pattern mining, graph mining, and link mining. Each of
these techniques can be used to discover a different type of advice:
• Frequent itemset mining: The objective of this technique is to find the co-

occurrence of items in a dataset of transactions. The co-occurrence is considered
“frequent” whenever its support equals or exceeds a given threshold. This tech-
nique can be used as a support for discovering any of the advices introduced be-
fore. For instance, in the case of discovering Component Association Patterns
we can this technique.

Runtime environment
for WIRE applicationsCompositions

Knowledge/advice
extractor

Offline recommender

Execution data

Interactive
recommender

Wisdom-aware editor
Development advices

Evolution advice Evolution advices

Wisdom-aware development environment Advice repository
Trigger (object,action,state)

Development
advice

Q
ue

ry

in
te

rfa
ce

Trigger

Advice

Mashup ID

Advice

• Association rules: This technique aims at finding rules of the form A→B, where
A and B are disjoint sets of items. This technique can be applied to help in the
discovery of any of the proposed advices. For instance, in the case of the Pa-
rameter Value Pattern, given the value of two parameters of a component, we
can find an association rule that suggests us the value for a third parameter.

• Sequential pattern mining: Given a dataset of sequences, the objective of se-
quential pattern mining is to find all sequences that have a support equal or
greater than a given threshold. This technique can be applied to discover Com-
plex Patterns, Component Association Patterns, and Connector Patterns. For in-
stance, in the case of the Connector Pattern, we can use this technique to extract
patterns that can be then used for suggesting connectors among components
placed on the design canvas.

• Graph mining: given a set of graphs, the goal of graph mining is to find all sub-
graphs such that their support is equal or greater than a given threshold. For our
purpose, we can use graph mining for discovering Complex Patterns and Con-
nector Patterns. For instance, for Complex Patterns we can suggest a list of ex-
isting ready compositions based on the partial composition the user has in the
canvas, whenever this partial composition is deemed as frequent.

• Link mining: rather than a technique, link mining refers to a set of techniques for
mining data sets where objects are linked with rich structures. Link mining can
be applied to support the discovery of any of the proposed advices. For example,
in the case of Data Mapping Patterns, we can discover patterns for mapping the
parameters of two components, based on the types these parameters.

Once community composition knowledge has been identified, we store the ex-
tracted knowledge in the advice repository in the form of directed graphs. In our ad-
vice repository, elements in the patterns, e.g., a component or a connector, are repre-
sented as nodes of the graph, and relationships among them, e.g., a component “has” a
parameter, are represented as edges between those nodes. We also store a set of rules
in our advice repository, which represent the trigger conditions under which a specific
knowledge can be provided as an advice. Based upon this information, through our
query interface we can match knowledge with the current composition context and
retrieves relevant advices from the advice repository. Retrieved advices are filtered,
ranked, and delivered based on user profile data (e.g., the programming expertise of
the user or his/her preferences over advice types).

6 Conclusion

In this paper we propose the idea of wisdom-aware computing, a computing paradigm
that aims at reusing community composition knowledge (the wisdom) to provide inter-
active development advice to less skilled developers. If successful, WIRE can extend
the “developer base” in each domain where reuse of algorithmic knowledge is possi-
ble and it can facilitate progressive learning and knowledge transfer.

Unlike other approaches in literature, which typically focus on structural and se-
mantic similarities, we specifically focus on the elicitation of composition knowledge
that derives from the expertise of people and that is expressed in the compositions

they develop. If, for instance, two components have been used together successfully
multiple times, very likely their joint use is both syntactically and semantically mean-
ingful. There is no need to further model complex ontologies or composition rules.

In order to provide identified patterns with the necessary semantics, we advocate
the application of the WIRE paradigm to composition environments that focus on
specific domains. Inside a given domain, component names are self-explaining and
patterns can easily be understood. In the Omelette (http://www.ict-omelette.eu/) and
the LiquidPub (http://liquidpub.org/) projects, we are, for instance, working on two
domain-specific mashup platforms for telco and research evaluation, respectively.

For illustration purposes, in this paper we used Yahoo! Pipes as reference mashup
platform, as Pipes is very similar in complexity to our own mashArt platform [5] but
better known. In order to have access to the compositions that actually hold the
knowledge we want to harvest, we will of course apply WIRE to mashArt.

Acknowledgements: This work was supported by funds from the European Commis-
sion (project OMELETTE, contract no. 257635).

References

1. H. Geffner. Perspectives on artificial intelligence planning. AAAI’02, pp.1013-1023.
2. D. Roman, J. de Bruijn, A. Mocan, H. Lausen, J. Domingue, C. Bussler, D. Fensel. WWW:

WSMO, WSML, and WSMX in a Nutshell, ASWC’06, pp. 516-522.
3. A. Koschmider, M. Song, H.A. Reijers. Social Software for Modeling Business Processes.

BPM’08 Workshops, pp. 642-653.
4. T. Reichling, M. Veith, V. Wulf. Expert Recommender: Designing for a Network Organi-

zation. Computer Supported Cooperative Work, vol. 16, no. 4-5, pp. 431-465, Oct. 2007.
5. F. Daniel, F. Casati, B. Benatallah, M.-C. Shan. Hosted Universal Composition: Models,

Languages and Infrastructure in mashArt. ER’09, pp. 428-443.
6. O. Greenshpan, T. Milo, N. Polyzotis. Autocompletion for mashups. VLDB’09, pp.538-549.
7. T. Hornung, A. Koschmider, G. Lausen. Rommendation Based Process Modeling Support:

Method and User Experience. ER’08, pp. 265-278.
8. A.V. Riabov, E. Bouillet, M.D. Feblowitz, Z. Liu, A. Ranganathan. Wishful Search: Inter-

active Composition of Data Mashups. WWW’08, pp. 775-784.
9. A.H.H. Ngu, M. P. Carlson, Q.Z. Sheng. Semantic-Based Mashup of Composite Applica-

tions. IEEE Transactions on Services Computing, vol. 3, no. 1, Jan-Mar 2010.
10. H. Elmeleegy, A. Ivan, R. Akkiraju, R. Goodwin. MashupAdvisor: A Recommendation

Tool for Mashup Development. ICWS’08, pp. 337-344.
11. OMG. Business Process Model and Notation (BPMN) - Version 1.2, January 2009. [On-

line] http://www.omg.org/spec/BPMN/1.2
12. OASIS. Web Services Business Process Execution Language Version 2.0, April 2007.

[Online]. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
13. S. Smirnov, M. Weidlich, J. Mendling, M. Weske. Object-Sensitive Action Patterns in

Process Model Repositories. BPM’10 Workshops, NJ, USA, September 2010.
14. D. Wegener, S. Rueping. On Reusing Data Mining in Business Processes – A Pattern-based

Approach. BPM’10 Workshops, NJ, USA, September 2010.
15. C. Shearer. The CRISP-DM model: the new blueprint for data mining. Journal of Data

Warehousing, Vol. 5, Nr. 4, pp. 13–22, 2000.

