
NGS: A New Generation Search Engine
Supporting Cross Domain Queries⋆

(Extended Abstract)

Daniele Braga1, Diego Calvanese2, Alessandro Campi1, Stefano Ceri1,
Florian Daniel1, Davide Martinenghi1, Paolo Merialdo3, Riccardo Torlone3

1 Dip. di Elettronica e Informazione, Politecnico di Milano, Milano, Italy
2 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy

3 Dip. di Informatica e Automazione, Università Roma Tre, Roma, Italy

Abstract. This paper presents NGS, a framework providing fully au-
tomated support for cross-domain queries. In particular, NGS (a) in-
tegrates different kinds of services (search engines, web services, and
wrapped web pages) into a global ontology, i.e., a unified view of the
concepts supported by the available services, (b) covers query formula-
tion aspects over the global ontology, and query rewriting in terms of the
actual services, and (c) offers several optimization opportunities leverag-
ing the characteristics of the different services at hand, based on several
different cost metrics.

1 Introduction and motivation

While an increasing amount of search services on the Web becomes available,
they still work in isolation; their intrinsic limit is the inability to support com-
plex queries ranging over multiple domains. Answering a query such as “find all
database conferences held within six months in locations whose seasonal average
temperature is 28◦C and for which a cheap travel solution exists” requires com-
bining search engines specialized over different domains. For instance: (i) finding
interesting conferences in the desired timeframe on online services made avail-
able by the given scientific community; (ii) finding if the conference location is
served by low-cost flights; (iii) finding if there are luxury and cheap hotels in
proximity of the conference location.

This paper describes a framework for the development of New Generation
Search (NGS) supporting queries over multiple, specialized search engines, de-
veloped in the context of a project funded by the Italian Government. Our
framework makes use of service-enabled and XML-related technologies, and of
ontological knowledge in the context of data mapping. In NGS we distinguish
between exact services and search services. Exact services have a “relational”
behavior and return either a single answer or a set of answers which are not
ranked. Search services return a list of answers in ranking order, according to

⋆ Supported by Italian PRIN project “New technologies and tools for the integration
of Web search services”.

some measure of relevance; such measure may be either visible in the result or
opaque. Services returning many answers have an associated selectivity, express-
ing the average size of the result. They can further be classified as “chunked” or
“bulk”; in the former case, they return results in chunks of a fixed size, whereas
in the latter case they return their result set as a whole.

The main contributions of this paper are: (a) a multi-level model for express-
ing queries over web services and search engines – this model covers a conceptual
level, where queries are expressed as conjunctive expressions over arbitrary pred-
icates; a logical level, where queries are mapped to services; and a physical level,
where queries are expressed as execution strategies over services, with given
methods for service invocation and for search engine integration; (b) several
strategies for performing the transformations required by these models, and in
particular for mapping a conceptual query into several logical queries (adapt-
ing well-known mapping techniques) and for optimizing the logical queries, thus
producing the best execution strategy – optimization requires the definition of
several, alternative metrics; (c) the inclusion within this framework of additional
steps, such as query augmentation (how to extend a query when it cannot im-
mediately be mapped to a service) and source wrapping (how to build wrappers
over data sources offering Web service interfaces); (d) an architecture for im-
plementing the framework, supporting service registration and offering query
interfaces for end-user interaction.

2 Overview of the approach

2.1 Running example

We consider as a running example the query reported in the Introduction: “find
all database conferences held within six months in locations whose seasonal
average temperature is 28 degrees and for which a cheap travel solution exists”.
We assume that queries can be expressed over a conceptual schema, represented
in Figure 1, consisting of 3 relations: travel, describing the details of flights and
hotels being selected; climate, describing weather conditions expected at given
dates in given locations; and conference, describing the conference offerings in
given subjects.

travel(From,To,Start,End,StartTime,EndTime,Hotel,FPrice,HPrice,Category),
climate(Location,Temperature,Date), conference(Topic,Name,Start,End,Location)

Fig. 1. Schema of conceptual services derived from the global ontology

The running query can be expressed by the Datalog expression in Figure 2,
where the terms preceded by a $ sign are user input parameters. Datalog notation
is chosen for its elegance and simplicity, but we currently focus on conjunctive
queries (i.e., select-project-join queries) without recursion. Note that “cheap so-
lution” is translated as a predicate over the overall cost of the solution; thus,

q(Conf,City,HPrice,FPrice,Start,StartTime,End,EndTime,Hotel) ←
travel($from, City, Start, End, StartTime, EndTime, Hotel, FPrice, HPrice, $category),
climate(City, Temperature, Start), conference(’DB’, Conf, Start, End, City),
Start≥$startDate, End≤$startDate+180, temperature≥28, FPrice+HPrice<2000.

Fig. 2. Query over the conceptual services

the problem considered in this paper could be further expanded into the use
of domain knowledge for query interpretation. Such expansion is indeed feasi-
ble because we assume a complete knowledge of the semantic domains of Web
services, and is planned within our project.

The query can be answered by six physical services which have been pre-
viously registered, represented in Fig. 3. These are: two services for conference
offerings, two services for hotel offerings, and one service for flight offerings and
for weather conditions. The presence of many physical services is due to the fact
that the same information may have some access limitations, i.e., be accessed
according to different access patterns. For instance, conferences may be queried
by setting the conference’s topic, or by setting the conference’s location. Thus,
services are denoted not only by the parameters that they expose to queries, but
also by the role of the parameters (input vs output), and therefore the repre-
sentation of a service is that of an adorned Datalog predicate, where places are
either bound or free; in Fig. 3, bound places are in boldface. We denote services
over the same data but with different adornments by a different index.

confSchedule(1)(Topic, Name, Start, End, City)
confSchedule(2)(Topic, Name, Start, End, City)
weather(City, Temperature, Date)
flightS(From, To, OutDate, RetDate, OutTime, RetTime, Price)
hotelS(1)(Name, City, Category, CheckInDate, CheckOutDate, Price)

hotelS(2)(Name, City, Category, CheckInDate, CheckOutDate, Price)

Fig. 3. Services at the physical level

A fundamental distinction in our model concerns the nature of services. Exact

services have a standard relational behavior and return either a single answer or a
set of answers which are not ranked. Conversely, search services return answers in
relevance order: their management within a query requires special care, because
in general the answers to a search service are very numerous, but users are
only concerned with the first answers. Thus, expanding a query to incorporate
all the results of a search service would be wrong. Moreover, the user expects
results in ranking order; thus, by composing answers from multiple services,
we must produce a global ranking that is a good composition of the various
partial rankings. We denote search services by giving them the “S” superscript.
For example, flight is a search service: it requires the origin and destination
locations as well as the departure and return dates, and outputs a list of flight
solutions, including their times and prices, in increasing price order.

2.2 System architecture

Our envisioned framework consists of three layers:

– Query formulation layer . First, this layer allows users to specify their
requests to the NGS system by using an interface which refers to concepts of
the global ontology. The query language and the ontology hide the specificity
of the services as implemented and available online. The main role of this
layer is to rewrite the user query into a logical expression of Web Service
calls. Queries are rewritten through mappings, and the result of this rewrit-
ing is expressed in terms of Datalog programs in the form of multi-domain
conjunctive queries over physical services data with access limitations; when
access limitations are too strict and prevent from reaching any answer, query
expansion mechanisms can be also used. Note that, in general, the availabil-
ity of different access patterns for the same service may give rise to several
alternative rewritings of the query. The issues concerning the query formu-
lation layer are described in Sections 3.1.

– Query execution layer . This layer receives the Datalog programs gener-
ated by the previous level. The role of this layer is to generate a query plan
optimized taking into account the parameters associated to the services and
the cost model. This optimization is done taking into account several aspects,
such as: (i) the types of operations involved in the query plan; (ii) available
profiling information on specific services; (iii) ranking of the results. The
issues concerning the query execution layer are described in Section 3.2.

– Data layer The data layer addresses the representation in the framework
of the physical services; they may be either Web Services or wrapped, data-
intensive Web sites. Services are constantly profiled so as to feed the opti-
mizer of the layer above with estimates of the figures which are relevant to
the optimization problem (such as response time, average number of returned
results, statistical distribution of values into the results, and typical decrease
trend in the function form of the relevance). When information sources are
wrapped, we envision resorting to automatic wrapper generation techniques,
so as to easily and readily maintain the wrappers aligned with the evolution
of the Web Sites. The issues concerning the wrapping of Web sources are
described in Section 3.3.

3 The main components of the architecture

3.1 Query mapping

Our considerations on the mapping between the global ontology and the ser-
vice schemas are drawn from work in data integration, where two basic ap-
proaches have been proposed to specify the mapping between a global ontol-
ogy (or global schema, in data integration terminology) and a set of services
(or data sources) [1]: global-as-view (or simply GAV), which requires that the
global ontology is expressed in terms of the services’ schemata, and local-as-view

travel(From, To, Start, End, StartTime, EndTime, Hotel, FPrice, HPrice, Category) ←
flight(From, To, Start, End, StartTime, EndTime, FPrice),
hotel(Hotel, To, Category, Start, End, HPrice).

Fig. 4. Example of GAV mapping for the travel service

q(Conf, City, HPrice, FPrice, Start, StartTime, End, EndTime, Hotel) ←
flight($from, City, Start, End, StartTime, EndTime, FPrice),
hotel(Hotel, City, $category, Start, End, HPrice),
confSchedule(’DB’, Conf, Start, End, City), weather(City, Temperature, Start),
Start≥$startDate, End≤$startDate+180, temperature≥28, FPrice+HPrice<2000.

Fig. 5. Logical query over the available services

(LAV), which requires the global ontology to be specified independently from
the services. Intuitively, the GAV approach provides a method for specifying
the integration system with a more procedural flavor with respect to the LAV
approach. Indeed, whereas in LAV the designer of the system may concentrate
on specifying the content of the services in terms of the global ontology, in GAV
the burden of specifying how to get the data of the global ontology by queries
over the services is entirely on the designer.

The approach taken in NGS is one where new services are registered in the
system by mapping their information content to the terms of the global ontology.
To simplify for the designer the task of specifying such mappings, we envision to
follow a LAV approach. However, to allow for query processing by unfolding, as in
GAV, we intend to adopt the techniques proposed in [2] to convert a LAV system
into an equivalent GAV system by introducing suitable constraints (essentially,
inclusion dependencies) in the global ontology.

An example of a suitable GAV mapping for travel is shown in Figure 4.
According to this and similar mappings for the other entities and services, the
query over the global ontology can be rewritten, in general, as a union of con-
junctive queries over the available services. In our running example we obtain
the query shown in Figure 5.

In the context of query answering over Web Services, queries can be conceived
as in the traditional relational setting, but with the extra requirement that
certain fields be mandatorily filled in by the user in order to obtain a result. As
mentioned, we assume that each service at the physical level is equipped with
an adornment specifying its input parameters, called access pattern, as shown in
Figure 3, where input fields are marked in boldface. Any query formulated over
such services needs to comply with the physically available access patterns. For
this reason, a conjunctive query, such as the one of Figure 5, where the order of
the literals in the body is immaterial, needs to be further instantiated into what
we call a logical access plan. First of all, for each service with more than one
adornment, one of the available access patterns has to be chosen. Besides, an
order of “execution” of the literals in the body of the query has to be determined
so that all the access patterns of all invoked services are respected, i.e., for each
input argument there is either a value provided directly by the user, or a binding

q(Conf, City, HPrice, FPrice, Start, StartTime, End, EndTime, Hotel) ←
confSchedule(1)(’DB’, Conf, Start, End, City), Start≥$startDate,
End≤$startDate+180, weather(City,Temperature,Start), Temperature≥28,
flight($from, City, Start, End, StartTime, EndTime, FPrice),
hotel(1)(Hotel, City, $category, Start, End, HPrice), FPrice+HPrice<2000.

Fig. 6. Logical access plan for the query of Fig. 5 using confSchedule first

q(Conf, City, HPrice, FPrice, Start, StartTime, End, EndTime, Hotel) ←
hotel(2)(Hotel, City, $category, Start, End, HPrice), Start≥$startDate,
End≤$startDate + 180, confSchedule(2)(’DB’, ConfName, Start, End, City),
weather(City, Temperature, Start), Temperature≥28,
flight($from, City, Start, End, StartTime, EndTime, FPrice), FPrice+HPrice<2000.

Fig. 7. Logical access plan for the query of Fig. 5 using hotel first

is available from an output field of a previously invoked service. We still write a
logical access plan as a conjunctive query, and make it clear what access pattern
is used for each service by indicating in subscript the corresponding index. As is
customary, we will use the left-to-right order of appearance of the literals in the
query body to indicate a class of possible invocation orders, meaning that if a
service s1 occurs left of service s2 in the query, then s1 is not invoked after s2.

A query under access limitations is said to be feasible if there exists an
equivalent query that is executable as is from left to right, while respecting
the access limitations. Whenever the query is feasible but admits several logical
access plans, they are all given to the logical layer, which will then select the
most promising ones according to some cost metric. In our running example, the
logical query of Figure 5 admits several logical access plans, due to the fact that
multiple access patterns are available for several services. Two possible plans for
this query are shown in Figures 6 and 7.

3.2 Query optimization

Starting from the set of alternative logical access plans, the query execution
layer is in charge of (i) deriving one or more executable physical access plans for
each of the alternative logical access plans and according to a given optimization
strategy and (ii) identifying the best physical execution plan according to a given
cost metric. The set of alternative logical access plans considered at this stage
contains only plans that are executable according to their access limitations;
non-executable plans have been discarded in the previous step.

If we consider the logical access plans shown in Figures 6 and 7, we can for
instance derive the physical access plans of Figure 8 and 9, resp.

The plans make use of a graphical modeling notation that we use to represent
a physical access plan. In this notation selective exact services (that is, return-
ing at most one tuple) are represented as simple boxes and proliferative exact
services (that is, returning on the average more than one tuple) are represented
as boxes labeled with a “*”. Search services are represented as boxes with a grey
trapezium (sketchily representing the decrease in ranking of the results). If a

q *
r

confSchedule(1)

weather

flight

hotel(1)

NL

MS

F2

F1

Fig. 8. Possible physical access plan for the logical access plan of Fig. 6.

q
r

hotel(2) weather

flight

* NL

MS

F2

F1

confSchedule(2)

Fig. 9. Possible physical access plan for the logical access plan of Fig. 7.

service supports the chunking of its output into smaller fragments, we show that
a particular access plan makes use of the service’s chunking feature by splitting
the service’s box into three smaller boxes. We distinguish between two join pat-
terns: parallel join and pipe join. The parallel join is represented by means of a
dedicated join symbol with an associated label (“NL” or “MS”) expressing the
respective join strategy. The pipe join is denoted by an arrow connecting two
nodes, indicating that the join is computed by feeding with the output of the
origin the input of the destination. Finally, an access plan has a unique start
node (the user query’s input) and a unique end node (the query result).

Once all logical access plans have been expanded into their candidate physical
execution plans according to the given optimization strategy, the identification
of the best physical execution plan is based on a suitable cost metric, which
allows us to associate a cost estimation to each physical execution plan.

3.3 Source wrapping

One of the novelties of our approach is the involvement of Web Services special-
ized in the extraction of contents from data-intensive Web sites (e.g., wrappers
of sites exposing bond quotes or the personnel of a given research institute).
In order to develop a scalable system, it is recommended that the generation
of wrappers is performed as automatically as possible. Several approaches have
been proposed for the automatic generation of wrappers (see [4] for a recent
survey).

In data-intensive sites, pages are usually automatically generated using scripts
which extract the content of the database, first executing some queries and then

serializing the extracted dataset into HTML code. A nice property of these sites
is that pages generated by the same script share a common structure. We call
a class a collection of pages in a site generated by the same script. We may
then re-formulate the problem as follows: “given a set of sample HTML pages
belonging to the same class, find a data structure capable to carry the same
information of the original Web pages”.

Arasu and Garcia-Molina proposed ExAlg [5], an algorithm for extracting
structured data from Web pages generated by encoding data from a database
into a common template. To discover the template (i.e., characterizing the class
of pages), ExAlg uses so called Large and Frequently occurring EQuivalent
classes (LFEQ), i.e. sets of words that have similar occurrence pattern in the
input pages. Conversely, RoadRunner [6] abstracts a wrapper as a regular
grammar, whose productions are inferred and refined by iteratively parsing the
input pages. Roadrunner leverages page regularity by exploiting similarities and
differences among pages by means of Match, an unsupervised algorithm that
iteratively refines a wrapper, by iteratively parsing pages of the sample set and
generalizing the wrapper whenever the parsing process fails.

The two approaches described last have complementary strengths and limita-
tions. In NGS, we have developed a combined technique that aims at conciliating
them, thus overcoming their limitations while leveraging their strengths. Based
on the formal background of RoadRunner, we have introduced a preprocessing
phase, which enriches the input pages by means of information derived from a
statistical analysis inspired by that proposed in ExAlg. The goal of the trans-
formation is to remove ambiguities that sometimes keep the RoadRunner al-
gorithm from inferring the grammar. Also, a post processing phase is run over
the extracted data in order to detect disjunctive patterns. Whenever these are
found for each branch of the disjunction, a wrapper is recursively inferred.

References

1. J. D. Ullman, “Information integration using logical views,” in Proc. of ICDT’97,
ser. LNCS, vol. 1186. Springer, 1997, pp. 19–40.

2. A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini, “On the expressive power
of data integration systems,” in Proc. of ER 2002, 2002.

3. D. Braga, A. Campi, S. Ceri, and A. Raffio, “Joining the results of heterogeneous
search engines,” Information Systems, submitted to.

4. M. Kayed and K. F. Shaalan, “A survey of web information extraction systems,”
IEEE Trans. on Knowledge and Data Engineering, vol. 18, no. 10, pp. 1411–1428,
2006.

5. A. Arasu, H. Garcia-Molina, and S. University, “Extracting structured data from
web pages,” in Proc. of ACM SIGMOD, 2003, pp. 337–348.

6. V. Crescenzi, G. Mecca, and P. Merialdo, “Roadrunner: Towards automatic data
extraction from large web sites,” in Proc. of VLDB 2001. San Francisco, CA,
USA: Morgan Kaufmann, 2001, pp. 109–118.

