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Abstract Wireless Sensor and Actuator Networks (WSNs) are distrib-
uted sensor and actuator networks that monitor and control real-world
phenomena, enabling the integration of the physical with the virtual
world. They are used in domains like building automation, control sys-
tems, remote healthcare, etc., which are all highly process-driven. Today,
tools and insights of Business Process Modeling (BPM) are not used to
model WSN logic, as BPM focuses mostly on the coordination of people
and IT systems and neglects the integration of embedded IT. WSN devel-
opment still requires significant special-purpose, low-level, and manual
coding of process logic. By exploiting similarities between WSN appli-
cations and business processes, this work aims to create a holistic sys-
tem enabling the modeling and execution of executable processes that
integrate, coordinate, and control WSNs. Concretely, we present a WSN-
specific extension for Business Process Modeling Notation (BPMN) and a
compiler that transforms the extended BPMN models into WSN-specific
code to distribute process execution over both a WSN and a standard
business process engine. The developed tool-chain allows modeling of an
independent control loop for the WSN.

1 Introduction

Today there is still lack of high-level, model-driven programming tools for Wire-
less Sensor and Actuator Network (WSN) applications and the integration with
enterprise services requires significant effort and expertise in embedded program-
ming of WSNs. Organizations are reluctant to install large-scale WSNs, as this
still requires significant, costly, low-level programming of sensing and actuation
logic for the WSN, in addition to the physical deployment of the WSN nodes
(e.g., inside a building). Additionally, setting up the communication channel be-
tween a WSN and an enterprise’s information system requires an even larger set



of technologies and manually writing of custom code. Domain experts typically
lack the necessary low-level programming skills.

To foster widespread adoption and more efficient use of sensor networks for
enterprise information systems, a need for a specifically tailored integration tech-
nique that is able to bring together sensor networks and business applications
[1] is perceived. The aim is to drastically improve the ease of programming of
WSNs by enabling the graphical modeling of WSN applications, leaving low-level
details to a model compiler and a run-time system. WSN programming should
be accessible to domain experts, such as business process modelers. They should
further be empowered to design the WSN’s interaction with enterprise informa-
tion systems using the methods of business process modeling they are familiar
with. Our approach aims to:

– Provide a conceptual model that abstracts typical WSN programming knowl-
edge into reusable tasks that can be integrated into modeling notations, such
as the Business Process Modeling Notation (BPMN).

– Develop an extension of BPMN [2], BPMN4WSN, that enables the graphical
modeling of WSN applications and their integration with BPs based on an
abstraction layer that hides low-level details of the sensor network.

– Introduce tools that enable the design, deployment, and execution of in-
tegrated WSN/BP applications. We do not reuse existing APIs toward the
WSN; we program the WSN and automatically generate the necessary APIs.

– Evaluate our approach with a realistic prototype deployment, including a
self-optimizing run-time system layer, and a report on the first experiences
with its usage in the context of the EU project makeSense.

In order to create applications that span both a BPMN process and a WSN
application, knowledge in both fields is required. We do not expect the applica-
tion developer (the domain expert) to model an executable process. Rather, we
suggest a two-phase approach, where a descriptive process model is created by
the developer, which is then refined by a more technical system developer using
the WSN extension integrated in the process diagram.

In the following, we outline an application scenario to better describe our
approach. Then, in Section 3, the typical characteristics and components of
WSNs are analyzed. In Section 4 it is outlined how the challenges identified in the
scenario are approached conceptually, and in Section 5 the according extension
of BPMN is described. Subsequently in Section 6 the implementation of the
prototype, including the code generation logic for WSNs is described. Section
7 critically discusses the results achieved so far. Section 8 reviews related work
before concluding the paper.

2 Scenario: Convention Center HVAC Management

Our application scenario showcases the operation of a convention center (see
Figure 1) that has a variety of meeting rooms, which can be booked for vari-
ous events. Each room can be booked at a rate that partly depends on room
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Figure 1. Integration of a convention center’s BP engine with a WSN for HVAC.

characteristics (e.g., its size) and partly on the energy consumption of the event
organized in the room. For this purpose, the convention center is equipped with
a Heating, Ventilation, and Air Conditioning (HVAC) system including a WSN,
which ensures comfortable levels of temperature, humidity, and CO2 for each
individual room for the booked duration of the respective event. In order to do
so, the HVAC system must be instructed automatically by the convention cen-
ter’s information system about when to activate the ventilation and how long
to control the room’s temperature and CO2 concentration for each room. Room
conditions are only maintained during the booked times to save energy and only
if presence of people is detected by presence sensing; air conditioning is shut
off when a meeting is not attended at all or ends prematurely. In turn, the
HVAC system feeds back sensor data to the information system, which allow
the information system to precisely compute the HVAC cost for each individual
event. The information system is used for the booking of rooms, the reporting
on energy consumption, and the billing of customers. This mode of operation
is more energy efficient that today’s common practice, where one would sim-
ply run the HVAC system at a fixed rate, independently of room occupation or
environmental conditions — a practice that wastes much energy.

Technically, it is necessary to develop (i) the BP logic running inside the BP
engine, (ii) the code running on the nodes inside the WSN, and (iii) a suitable
set of communication endpoints supporting the interaction of the BPM with
the WSN and vice versa. Note that it is not the goal of this work to optimize
convention center operation or more generally building automation, but to pro-
vide a basic set of abstractions, tools, and methodologies that can be used in all
scenarios where also WSNs are used. We use it merely as a device to depict a
concrete application of our approach.



3 Relevant Properties of Wireless Sensor Networks

Before going into the details of the approach, the special properties of WSNs
that are relevant at the application layer and that therefore underpin our model
of the system are explained. A WSN is a distributed system, namely a network of
wireless, battery-powered, autonomous, small-scale devices, so called nodes, each
of which is equipped with one or more sensors or actuators or both. Nodes are
battery-powered and replacing the battery is mostly not intended or not feasible
from a Total Cost of Ownership (TCO) perspective. Therefore, they make use
of ultra-low-power hardware, that is drastically limited in processing power,
memory, and transmission bandwidth and the application software running on
the nodes, including wireless communication protocols, needs to be optimized
for low power consumption to extend network lifespan. These limits typically
prevent executing a regular BPMN engine on the devices that interprets BPMN
models serialized as XML.

Sensors are used to sense information from the real world (e.g., temperature)
while actuators perform actions that change the state of the environment (e.g.,
control a motor or a lamp). The typical number of nodes inside a network can
vary from a few to hundreds or even thousands. Via radio links, a node can
generally communicate with all other nodes in its transmission range and with
nodes further away by multi-hop, routed communication. WSNs are able to
self-organize, overcome network failure, and execute distributed computation
logic, such as computing the average of sensor values while those are routed to
a destination node. Often, WSNs are composed of heterogeneous nodes, each
equipped with a custom set of sensors, so that, for example, one type of node
can sense CO2 and humidity while another type of node is able to control an
automatic door, while a third has enough special hardware to compute complex
arithmetics.

As a basis for modeling WSN application logic, a very simple model of the
physical set-up that is sensed and acted upon is assumed: A given WSN monitors
real world entities, each is referred to as an Entity of Interest (EoI) which can
be a location or a thing. A thing is any physical object, while a location is
a space that the sensor network is monitoring, e.g., a room or a building. A
domain expert is usually only interested in the EoIs and the operations that can
be applied to them, but not in the technical layer of sensors that sense or the
actuators that influence them.

To overcome the limitations of WSN hardware and to maximize efficiency
of operations, the research community has introduced a large number of pro-
gramming abstractions to program wireless sensor networks [3]. By abstracting
existing programming concept into high-level constructs [4] (described in Section
5.2) and assuming that all existing functionality can be expressed using them,
one can use high-level constructs as basic building blocks for graphical modeling.
Usually, a sensor network will perform some or all of these tasks:

Sensing: measuring one or more environmental parameters of an EoI, such as
temperature or humidity, making use of the sensing equipment of the nodes.



Actuation: enacting operations physically affecting an EoI, e.g., controlling or
moving it or flashing a LED. WSNs are often used to actuate or control the
environment in reaction to sensed parameters, creating a control loop (as
the actuation eventually triggers changes in the sensed values).

Task distribution: distributing operations that coordinate a subset of nodes,
e.g., any in-network aggregation on the input values or the election of a
controller node based on certain criteria. As WSNs consist of several nodes,
several of which can monitor the same EoI, especially data aggregation op-
erations are often required, e.g., to compute the average temperature of a
room observed by many sensor nodes.

From the perspective of a domain expert, it is irrelevant which part of a WSN
performs a task, e.g., whether an operation is carried out by a single node or the
network as a whole as long as the operations are addressable by an EoI.

4 Requirements and Approach

In the convention center scenario, there is a need for collaboration between the
reservations and billing systems in the back-end and the sensor network that
executes the sensing and actuating operations. Thus, the application runs on
different types of systems which can be seen as two distinct participants in the
process. This raises the need to model both the intra-WSN logic and its interac-
tions with back-end systems as a collaboration of two process participants. While
the back-end part is orchestrated using classical Business Process Management
(BPM), modeling the process logic to be executed inside the WSN needs certain
provisions (e.g., model extensions) to enable the specification of WSN logic in a
high-level fashion and the creation of code that can be executed in the network.

Typically, the integration of WSNs into BPs is based on the invocation of
services exposed by the network [5,6,7]. This results in a modeling approach
that uses the network as set of available operations on which a process can be
constructed, but that prohibits the programming of the WSN itself. This limits
the possibility to define custom WSN logic to be carried out by the network as
part of the process. Instead, the key idea of our approach is to develop a business
process modeling notation that allows a domain expert to program both the BP
and the actual network logic, without the need to know and specify all the low-
level details. The created process model is later used to derive the code that will
be executed by the WSN. In this way, the WSN logic is fully specified at the
process level.

The specific requirements we identify can be divided into supporting model-
ing, deployment and runtime. Supporting modeling means defining a modeling
paradigm that fits the needs of a domain expert and integrates back-end business
processes and WSN logic using a single modeling language. This requires to:

– Provide an easy to understand and familiar way of expressing WSN logic;
enable integrating WSN processes into back-end processes, coupling them
and allowing for easy data sharing.



– Define a set of concepts to describe the logic and operations that can be
combined for creating reusable, high-level WSN modeling constructs. We
have to supply the modeler with the possibility to specify operations like
sense, actuate and aggregate for measurements over EoIs.

– Model WSN capabilities and details. WSNs are usually heterogeneous re-
garding the type of sensors and actuators. Knowing the characteristics of the
network is fundamental to have an overview of which things and locations
can be controlled and monitored by the WSN as well as which operations the
WSN is able to perform. Having such a model will give the domain expert
the ability to express the desired processes in the familiar terms of EoIs and
irrespective of technical systems.

– Supporting the modeler in designing only feasible processes by restricting
the available modeling constructs to him to what the WSN is capable of
executing.

Supporting the deployment of the process requires to:

– Split the process model into an intra-WSN part and a WSN-aware part
(back-end). The process is divided between two actors that participate in
the execution. These two parts of the process have to be separated and
handled differently.

– Create WSN binary code. The intra-WSN part of the process has to be
translated to binary code and injected into the nodes. This code is generated
based on the flow of the process model and tasks that describe the operations.

– Create the endpoints and communication channels to handle the messages
from and to the network. After having split the process in two parts and
after having translated the WSN part into binary code the communication
between these two participants has to be guaranteed. To do so, the end-
points and the communication channels through which the messages will be
sent/received need to be available.

Supporting the execution requires to:

– Provide a process engine to execute the WSN-aware business process part.
The process engine also handles the communication with the WSN.

– Run the code in the WSN. Part of the process actually runs inside the net-
work without the need for external communication and control. The process
is executed on the gateways and the actions are distributed on the nodes,
guaranteeing the correctness of the process depicted by the modeler.

Figure 2 illustrates the conceptual model of how we approach WSN program-
ming. The model is not meant to be an extension of the BPMN meta-model.
Only part of it is related to BPMN4WSN, the other part is related to our own
modeling formalism for the definition of low-level WSN logic. The two entities
on the top represent the physical WSN, which we abstract as composed of a set
of Nodes (sensor or actuator nodes) supporting a set of native operations, the
so-called WSN Operations, such as sense CO2 for a sensor or open for a valve
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Figure 2. Conceptual model of WSN operations

actuator. We allow the domain expert to use WSN operations by abstracting
away from the network topology, i.e., nodes, and instead allowing him to reason
in terms of EoIs via a dedicated task type, the WSN Tasks. A WSN Task is
a generic action that can be used to express sense, actuate, and aggregate op-
erations and that can be executed by the network. The WSN Task is logically
connected to an EoI, which allows the modelers to scope the action. That is, the
EoI specifies where the action will be executed; it could be a thing or a location.
WSN Task and EoI represent the high-level constructs used to model WSN logic
in BPMN4WSN. This level of abstraction is however not enough to describe
all the needed details to generate binary code that runs on the nodes, which
instead requires taking into account the topology of the network. The detailed
specification is based on WSN logic constructs, which abstract operations that
can be configured (e.g., by adding a concrete target node resolving a logical EoI)
and translated into binary code. The composition of WSN logic constructs (the
WSN logic composition box) allows the system developer to refine the process
model designed by the domain expert and to fill WSN tasks with concrete logic.

Figure 3 shows the architecture of the tool chain for developing WSN/BP
applications containing an extended BPMN editor in which the process is mod-
eled, and a compiler for translating the high-level specifications into low-level
executable binary code for the sensor network and for the process engine. Next,
the modeling and deployment part are discussed in more detail; a first prototype
of the tool is discussed afterwards.

5 BPMN4WSN

As illustrated in Figure 3, two types of developers jointly develop a process
model: the application developer and the system developer. The application de-
veloper is the person who models the coarse process; he is an expert of the domain
with experience in business process modeling and has some WSN background.
The system developer is a WSN expert and has the task of creating the refined,
XML-formated model of the system (see the bottom left corner of Figure 3).
This model contains information of the network such as the EOIs, nodes and
available sense and actuate operations. The two roles collaborate mainly in the
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design of WSN Tasks. The application developer creates a process that crosses
the system boundary between standard IT and WSN including the specification
of the behavior of the latter. He defines a descriptive, not yet executable version
of the process. For instance, in the convention center use case, the application
developer would specify a task for reading the latest sensor values or driving
an actuator based on the system descriptor model. Later, the system developer
would refine this model by adding WSN logic components to make the tasks
that involve the WSN executable.

5.1 Process Logic

In our solution the design of the business process is mainly carried out by the
application developer, who uses BPMN [8] with some additions based on the
extension points defined in the standard (without touching the BPMN meta
model), designed to model the salient characteristics of the WSN. The extended
language is referred to as BPMN4WSN. This extended version comprises both
new components and modeling rules.

A BPMN4WSN process must be composed of at least two pools: an intra-
WSN pool and WSN-aware pool; Figure 4 contains a minimal example. The
intra-WSN pool is the part where the WSN logic is specified, while the WSN-
aware pool is a classical BPMN process. The splitting into process logic executed
inside and outside the WSN forces the modeler to explicitly model interactions
between the two parts as messages, directly mapping the run-time behavior
(where messages are the only way of interaction between the parts) to the model.
This separation also enables the clean generation of code.

In the intra-WSN pool, constructs that directly orchestrate WSN function-
ality (made available through high-level abstractions) are needed. This need is
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addressed by introducing a new activity type: the WSN Task, that can only be
used in the intra-WSN part. It has two properties: a reference to a set of WSN
logic construct definitions and the EoI to which the respective operations should
be applied (see Figures 4 and 2). It has an antenna on the top-left corner to dis-
tinguish it from other tasks; if specified, the EoI value is written below the task
name. For example, setting the EoI value to “room Moon” will execute the task
on those nodes that belong to the “room Moon”. In a nutshell it specifies where
(i.e., by which subset of nodes) each WSN Task is executed.

The referenced WSN logic construct definition is the set of operations that
have to be performed by the network. For simplifying the modeling of such low-
level programming specification, a set of WSN logic constructs that describe the
common operations and the way they can be combined is created.

In addition to the WSN Task, a Performance Annotation element, i.e., an
extension of the BPMN group element which shows the chosen performance
configuration on the top-left corner, is introduced. It is used for describing the
network behavior from a performance point of view. This new component allows
the application developer and system developer to decide when the network per-
formance goal has to be changed (e.g., to optimize battery lifetime). For example,
when a room is empty, the network will be set to low energy consumption mode
in order to save battery and prolong node network lifetime at the cost of lower
reactiveness and possibly less reliable message transfer. In cases where high per-
formance is needed (at the cost of battery power), other performance annotations
are used. At run-time the execution semantics of these annotations is that one
performance mode is set for the whole WSN, depending on the number of the
tasks in each performance group. The group that contains the most tasks to be
executed sets the performance mode.



5.2 WSN Task Specification

WSN Tasks are modeled in two steps: (i) the process design and (ii) the pro-
cess refinement. The process design is generally carried out by the application
developer. He just specifies a WSN Tasks with a speaking name, which can be
a sense, actuate, or aggregate operation and the EoI on which the operation has
to be executed. This part of the modeling is represented in Figure 2 by the items
inside the BPMN4WSN dashed rectangle.

The process refinement (an example is shown in Figure 4), instead, is gen-
erally performed by the system developer. Its goal is to transform all high-level
WSN Tasks into executable operations by combining WSN logic constructs which
model the network behaviors. As shown in Figure 2, each WSN Task represents
WSN logic constructs that are the basic functionality and instances of so called
meta abstractions [4] that must be configured and instantiated:

Local actions are executed locally on each sensor node.

– The tell/report actions represent one-to-many/many-to-one communication.
– The tell action enables a node to delegate an embedded action to a set of

other nodes.
– The report action enables the gathering of information from many nodes.
– Collective actions enable distributed, many-to-many collaborations.

Each of these distributed actions has a target, which is used to select the
subset of nodes the action refers to (obtained by resolving logical EoIs into
physical nodes, based on the system description). In addition there is also the
possibility to specify data operators useful to perform mathematical operations
during transmission of data (e.g., to compute the average).

Each specific WSN deployment has its unique system-description, which is
the starting point for modeling. It describes the details of the network and it is
used as configuration for the model editor. The document provides a high-level
description of application-specific details of the concrete WSN deployment to
the business process editor and to the model compiler. It is used by the editor
to list only those attributes to the system developer that are actually available
in a concrete deployment, such as the list of EoIs (simple or composed ones like
“First Floor” comprising “room1” and “room2”) and to restrict the selectable
operations (e.g., CO2 sensing can only be selected if EoI “room2” has been
selected, because only that room is equipped with CO2 sensors).

6 Prototype

The approach described in the previous sections has been implemented as a
proof-of-concept prototype. Figure 3 depicts the architecture of the prototype,
showing the document flow and the actors involved. The modeling process, de-
fined by our tool chain, is divided into three phases: modeling, translation, and
execution.
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Figure 5. The HVAC process of the convention center. For high-res screen shots, visit
http://goo.gl/4Roc2; last check 23 March 2012.

Modeling. For the modeling part of the prototype, a well-known web-based
BPMN editor called Signavio Core Components (http://code.google.com/p/
signavio-core-components) has been extended. The editor has been modified
by adding a start page for scenario selection and a model editor for the WSN
logic constructs.

The start page is used to select or create a separate workspace for each sce-
nario to enable development for distinct WSN set-ups, each with its on system-
description. In each workspace, only operations that can actually be executed
inside the corresponding network are enabled, helping the modeler in creating
correct executable processes. For instance, in our example scenario there would
be the possibility to sense CO2 and presence but no other environmental param-
eters as the WSN is only equipped with these sensors.

BPMN extension points have been used to realize WSN Tasks and perfor-
mance annotations as explained in Section 5 and in Figure 4. To support the
modeling, the modeling tool has been extended with these two components.

The WSN logic construct composition has been enabled by creating a new
meta model inside the tool. By doing so, the modeler is given the possibility
to compose WSN logic construct blocks by dragging and dropping and nesting
them according to predefined composition rules that are checked by the tool.
The composition is later translated into an internal format, and the files are
used by the compiler to create the binary code for sensors.

Example. In Figure 5 there is a screen shot of the process that models the
scenario explained in Section 2. For the sake of clarity, in the intra-WSN process
only CO2 measurement and presence detection are modeled.



A new process instance is started when a new meeting is scheduled. The
WSN will be set to low energy consumption mode until the actual meeting starts.
Throughout the duration of the meeting, the network checks the room conditions,
increasing the ventilation when sensor values exceed a given threshold and a
human presence is detected. After the scheduled meeting end time, the network
checks if someone is still in the room, in which case the information system is
informed, charging the user for extra time.

Translation and Execution. The WSN-aware part of the process is a stan-
dard BPMN model that can be executed by a process engine exterior to the
WSN. The intra-WSN part, instead, is translated into executable code. A tool
for translation called model compiler takes this part of the process and generates
code implementing a custom execution engine. The executable program hence
behaves similar to a regular BPMN engine interpreting the given BPMN model.
The generated program implements a finite state machine, realizing the execu-
tion semantics of the translated process model including instance management
and message correlation, and of course keeps track of all execution tokens in each
process instance as specified in the BPMN 2.0 specification.

For example, an exclusive diverging gateway will be translated into a series of
if statements (mapping the conditions on the outgoing flows) in the “main loop”
of the program. Each WSN Task is translated using the WSN logic construct
composition describing sensor logic. This is the most extensive generation step,
as these sub-models need to be mapped to an API for instantiating, managing,
and using those programming abstractions. The system-description describes the
characteristic of each node of the network and it is used as input for the transla-
tor. The EoI of a WSN Task is mapped to attribute matching at run-time, e.g.
if a WSN Task has been configured to operate on EoI “Floor 1” and the system
developer contains information which room ids belong to that floor, this could
be mapped to the expression location=’room1.1’ or location=’room1.2’.

The two parts of the process can now be executed separately. To make them
communicate, the model compiler maps the message flows between intra-WSN
and WSN-aware process to communication endpoints that are created automat-
ically on either side, enabling each part to receive and send messages. As the
message format and transmission encoding are out of scope of the BPMN spec-
ification, a simple message format and an efficient transmission encoding are
defined and implemented in both the generated intra-WSN executable and as
an extension to a regular BPMN execution engine. In order to support the co-
ordination of multiple instances, each message contains a field that is used for
instance correlation and the execution of message start events creates instance
IDs that need to be used by either side of a same process instance.

7 Discussion and Future Work

Our approach was guided by the core requirement presented in Section 4, i.e.,
to integrate WSN programming into business process modeling. We address



this requirement by offering unified modeling in one model editor, hiding model
artifacts that are not relevant in a given modeling context, splitting work between
application developer and system developer, and providing model compilation
and execution as a custom engine in the WSN.

The work described in this paper is a first iteration towards integrating WSNs
with BPs, combining classical business process modeling with ad-hoc extensions
for WSNs that hide low-level network details. This integration allows an applica-
tion developer to design process logic both inside and outside the sensor network,
without requiring intimate knowledge of how to program distributed computa-
tions inside a WSN; an intuitive understanding of EoIs and sensing and actuating
actions is enough. The system developer instead only focuses on the refinement
of WSN Tasks. The described tool-chain takes care of splitting the two logics
(intra-WSN and WSN-aware) and of the binary code generation. Endpoints for
communication between the business process and the network are created fol-
lowing the model of the process. Yet, there is still space for improvement, space
that we are going to cover in our future work.

Patterns. For instance, WSNs are characterized by hardware constraints that an
application developer is typically not familiar with. Thus, providing patterns as
best practices for modeling WSN logics is a necessity that is not yet implemented
but that will be covered in the future, in order to further simplify the creation
of WSN applications.

Two different meta models. Our current solution uses a different meta-model
for modeling the lowest level of WSN logic, the WSN logic construct. WSN Tasks
internally follow a logic that is different from BPMN, in order to compose WSN
logic constructs. We could therefore not model them via simple sub-processes. A
new logic and meta-model is needed, which is however seamlessly integrated in
the same model editor. Opting for pure BPMN modeling, also for the WSN logic
construct would have complicated the modeling as they have strict composition
rules that could not be expressed easily in BPMN. Instead, we use a simple box
model to compose WSN logic constructs, supporting the construction of correct
models. We will evaluate to what degree we can use more BPMN and less custom
modeling constructs in the future.

Modeling two separate pools. Our current prototype forces the modeler to
model at least two pools, one for the intra-WSN part and one for the WSN-aware
part. We opted for this solution as it makes communication from and to the WSN
explicit and the compilation and creation of communication endpoints easier.
Modeling all logic in a single pool would be less burdensome to the modeler, but
it requires non-trivial data and control analyses of the process, which for the
sake of simplicity we did not implement yet.

Events. Although the current model does not explicitly use special BPMN
events for the WSN inside the process model, the approach is strongly based
on asynchronous communication under the hood. On the one hand, modeling
two explicit pools with asynchronous message exchanges has similar semantics
as BPMN message events. On the other hand, for example, the current imple-
mentation of receiving a sensor value is realized asynchronously: rather than



querying the sensor directly, the buffered last value of a stream of sensor val-
ues is read. This behavior is however hidden behind the WSN logic constructs.
Introducing WSN-specific events in the process model would however allow for
more flexible control flow logic and is therefore part of the future development
of the system.
Multiple processes interacting with one WSN. In our current prototype,
the generated intra-WSN logic only supports conversations with multiple in-
stances of one process model. In the future, we intend to support multiple process
models by merging the intra-WSN parts of all models to a combined model or by
running several of the generated engines concurrently at operating system level
and dispatching messages based on model identifiers. In practice, we could single
out the WSN-internal logic as an own pool and allow the application developer
to define multiple (WSN-aware) processes interacting with this WSN-internal
process. This would enable the generation of WSN code that natively supports
multiple different WSN-aware processes.

8 Related work

Building commercially relevant applications on resource-constrained, networked
embedded systems (the front-end) such as WSNs while integrating them into
business processes of an enterprise (the back-end) is a complex, challenging task
that has to be repeated for each combination of front-end and back-end. Numer-
ous efforts have been made, aiming also at demonstrating the business benefit.

Approaching the problem bottom-up, i.e., from the WSNs, several solutions
have been proposed to simplify programming. Although many programming ab-
stractions have been introduced, most of them aim at simplifying the activities
of skilled WSN programmers [9] and cannot be used directly to specify high-level
process constructs by domain experts without WSN expertise.

The COBIS project (www.cobis-online.de) aimed at integrating hetero-
geneous WSNs with back-end systems by providing a web service facade to the
WSN’s functionality. The proof of concept was trialled in an environment, health,
and safety application scenario, more specifically by enforcing physical storage
rules for hazardous goods managed in an enterprise system [5,10].

The SOCRADES project (www.socrades.eu) targeted industrial automation
with the goal to almost eliminate the need for any proprietary intermediate
layers between embedded services and the business back-end by directly service-
enabling devices themselves [1]. The approach was based on the WS-* family of
web service standards and only for very resource-constrained and legacy devices
a gateway/service-mediator concept was developed to enable those to participate
in service orchestrations.

Other proposed solutions for modeling sensor network applications using a
process-based design include the Graphic Workflow Execution Language for Sen-
sor Network (GWELS) [6], which enables the design of data-flow as workflow,
and an ad-hoc architecture for handling the communication. Similarly, [7] uses
a process paradigm for defining WSN applications, easing the configuration for



non-experts of the field. Mash-up composition is also promising; in [11], the au-
thors wrap smart-objects with web services, introducing an architecture and a
web-based mash-up tool for composition and execution. These solutions enable
the modeling of WSN logic in a model-driven fashion but without deriving the
executable logic of the network.

Recently, BPMN has gained interest as method to program WSNs. Caracas
et al. [12,13] presented studies on the expressiveness of the language and its
potential to be compiled into source code for WSN nodes. As results they produce
a system that creates WSN applications by compiling BPMN processes. The
outcomes highlight that, as it is, BPMN is powerful enough for specifying the
high-level behavior (if modeled with correct patterns) more than low-level one.
At the same time they prove how a process can be compiled into native source
code for WSNs, without losing too much performance compared to hand-written
code. These preliminary works show the possibility to compile the BPMN for
creating binary code. However, the example shown in this work users a higher-
level API, that does not allow one to fine-tune communication in the WSN as it
is possible with our approach.

In the past months, extensions of BPMN for modeling smart objects have
been proposed as outcome of the IoT-A (www.iot-a.eu) project [14,15], an idea
that shares some common ground with our approach. The idea is to extend
the BPMN language to model Internet of Things (IoT) aspects. However, this
approach differs as they propose modeling extensions that affect the language
at a high level of abstraction; in fact their goal is to use this language to model
IoT services instead of creating the logic from the process.

Approaches like SysML [16] are only remotely related to our approach. This
modeling framework, derived from UML, allows the modeling of low-level details
of a WSN system. Yet, SysML models are graphical models without a standard
serialization, therefore they are not directly usable for process-based integration.

9 Conclusion

In the era of the IoT, collaboration and integration of non-conventional IT de-
vices, such as entertainment and automotive equipment, RFID devices and tags,
or WSNs, with Enterprise services is of paramount importance [1]. In this paper,
we focused on one relevant representative of this need, i.e., WSNs, which typi-
cally still represent isolated and impenetrable realities from a business IT point
of view. We proposed a layered approach for developing, deploying and manag-
ing WSN applications that natively interact with enterprise information systems,
such as a business process engine and the processes running therein. We did not
try to crack the whole problem at once, e.g., by aiming at a business-view-only
approach to WSN application development, and rather foster current practice,
equipping both the application developer (holding the process knowledge) and
the system developer (holding the WSN knowledge) with effective languages
and instruments to co-develop advanced, process-based WSN applications with
non-trivial distributed sensing and actuation logics.
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