
7

Modeling, Enacting, and Integrating Custom Crowdsourcing
Processes

STEFANO TRANQUILLINI, FLORIAN DANIEL, PAVEL KUCHERBAEV,
and FABIO CASATI, University of Trento, Italy

Crowdsourcing (CS) is the outsourcing of a unit of work to a crowd of people via an open call for contributions.
Thanks to the availability of online CS platforms, such as Amazon Mechanical Turk or CrowdFlower, the
practice has experienced a tremendous growth over the past few years and demonstrated its viability in
a variety of fields, such as data collection and analysis or human computation. Yet it is also increasingly
struggling with the inherent limitations of these platforms: each platform has its own logic of how to
crowdsource work (e.g., marketplace or contest), there is only very little support for structured work (work
that requires the coordination of multiple tasks), and it is hard to integrate crowdsourced tasks into state-
of-the-art business process management (BPM) or information systems.

We attack these three shortcomings by (1) developing a flexible CS platform (we call it Crowd Computer,
or CC) that allows one to program custom CS logics for individual and structured tasks, (2) devising a
BPMN–based modeling language that allows one to program CC intuitively, (3) equipping the language with
a dedicated visual editor, and (4) implementing CC on top of standard BPM technology that can easily be
integrated into existing software and processes. We demonstrate the effectiveness of the approach with a
case study on the crowd-based mining of mashup model patterns.

Categories and Subject Descriptors: H.3.5 [Information Systems]: Online Information Services—Web-
based services; H.4.1 [Information Systems]: Office Automation—Workflow management; H.1.2 [Informa-
tion Systems]: User/Machine Systems—Human information processing

General Terms: Design, Languages, Human Factors

Additional Key Words and Phrases: Crowdsourcing, processes, tactics, Crowd Computer, BPMN4Crowd

ACM Reference Format:
Stefano Tranquillini, Florian Daniel, Pavel Kucherbaev, and Fabio Casati. 2015. Modeling, enacting, and
integrating custom crowdsourcing processes. ACM Trans. Web 9, 2, Article 7 (May 2015), 43 pages.
DOI: http://dx.doi.org/10.1145/2746353

1. INTRODUCTION

Crowdsourcing (CS) is a relatively new approach to execute work that requires human
capabilities. Howe [2008], who coined the term, defines crowdsourcing generically as
“the act of taking a job traditionally performed by a designated agent (usually an em-
ployee) and outsourcing it to an undefined, generally large group of people in the form of
an open call.” In principle, work could therefore be outsourced in a variety of ways, such
as by temporarily recruiting volunteers to help complete a given job or by distribut-
ing questionnaires that people fill out voluntarily. However, the environment that has

This work was partially funded by the BPM4People project of the EU FP7 SME Capacities program and
by the Evaluation and Enhancement of Social, Economic, and Emotional Wellbeing of Older Adults project
under agreement 14.Z50.310029 of Tomsk Polytechnic University, Russia.
Authors’ address: S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati, University of Trento—DISI, Via
Sommarive 9, I-38123 Povo (TN), Italy; emails: {tranquillini, daniel, kucherbaev, casati}@disi.unitn.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1559-1131/2015/05-ART7 $15.00

DOI: http://dx.doi.org/10.1145/2746353

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

http://dx.doi.org/10.1145/2746353
http://dx.doi.org/10.1145/2746353

7:2 S. Tranquillini et al.

contributed the most to the emergence and success of the practice is the Web, and we
therefore specifically focus on CS in the context of the Web and on work that is crowd-
sourced with the help of so-called crowdsourcing platforms. These are online brokers of
work (in the form of Web applications/services) who mediate between the crowdsourcer
who offers work and the workers who perform work in exchange for a possible reward.
The latter form the crowd. Prominent examples of CS platforms are Amazon Mechan-
ical Turk (https://www.mturk.com), CrowdFlower (http://www.crowdflower.com), and
99designs (http://99designs.com). The power of these platforms is their workforce—the
crowd—which is potentially large, always available, and can be requested on demand,
making the workforce in CS similar to computing power or data storage capability in
cloud computing [Baun et al. 2011].

Hoßfeld et al. [2011] statistically analyzed the growth of the Microworkers CS plat-
form from May 2009 to October 2010 and identified a square or a logistic growth model
for its crowd. Concretely, according to a recent white paper by Massolution [2013], the
enterprise CS market experienced a 75% growth in 2011, after a 53% growth in 2010,
and was expected to double in 2012. The people engaged as workers in CS platforms
span the whole globe, and their number increased by 100% in 2011 and was expected
to grow even more in the years to follow. This is confirmed by the recent first annual
survey among enterprise leaders and entrepreneurs by the 2014 Global Crowdsourcing
Pulsecheck [Crowdsourcing Week 2014], which reports that about 16% of respondents
think that CS will grow “substantially more than current growth,” 38% say it will
grow “more than current growth,” and 41% say it will grow “same as current growth,”
whereas only 5% think it will grow “less then current growth.” Likewise, the number
and type of available CS platforms have enormously grown over the past years, sum-
ming up to hundreds of platforms as of today (http://www.crowdsourcing.org/directory)
and covering areas, such as Internet services, media and entertainment, technology,
manufacturing, financial services, and travel and hospitality. The key benefits iden-
tified by crowdsourcers are productivity, flexibility and scalability, cost savings, pre-
dictable costs, and better time to market [Massolution 2013].

Typical tasks outsourced on today’s CS platforms are so-called microtasks, such as
tagging pictures or translating receipts, and creative tasks, such as designing a logo or
implementing a piece of software. Each platform approaches these tasks following its
very own tactic—that is, organization of work—depending on the nature of the task. For
instance, microtasks with small rewards do not require any direct interaction between
the crowdsourcer and the worker; creative tasks with higher rewards may instead
require a direct negotiation among the two. Therefore, each platform has its own way
of describing tasks, publishing tasks, selecting workers, assigning tasks, collecting
contributions, assessing quality, rewarding work, and so forth. The tactic thus defines
how the platform manages one individual crowd assignment—in other words, an atomic
or indivisible piece of work performed by one worker in one transaction.

Composite tasks that require the coordination of multiple individual tasks (assign-
ments of different types of work) typically are not supported. We call these composite
tasks crowdsourcing processes, as they require the coordination of multiple individ-
ual atomic tasks. Enacting CS processes therefore requires the implementation of ad
hoc logic [Kulkarni et al. 2012]. This logic may comprise the specification of a control
flow that describes in which order tasks are executed, a dataflow that describes how
data is passed among tasks, additional machine tasks that are executed by machines
instead of by the crowd (e.g., to aggregate data produced by the crowd), and the like.
These requirements make the crowdsourcing of composite tasks highly process driven
[Minder and Bernstein 2011; Schall et al. 2012; Kittur et al. 2012; Kucherbaev et al.
2013], hence the name “crowdsourcing process.” Platforms such as TurKit [Little et al.
2010b] and Jabberwocky [Ahmad et al. 2011] provide some support for structured CS

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

https://www.mturk.com
http://www.crowdflower.com
http://99designs.com
http://www.crowdsourcing.org/directory

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:3

Fig. 1. The high-level steps of CS and the respective actors.

processes to be deployed on top of existing crowdsourcing platforms, typically Mechni-
cal Turk. Yet they suffer from the inherent limitations described earlier and are only
hardly integrable with legacy systems (e.g., to enable the inclusion of crowdsourced
tasks into common business processes or applications).

These limitations put the healthy growth and further spreading of CS at risk, in that
they load the crowdsourcer with unnecessary coordination overhead, prevent scalabil-
ity, and lower flexibility, as well as threaten cost and time savings if more complex,
structured work is to be crowdsourced.

To overcome these limitations, we propose the following contributions:

—A flexible CS platform called Crowd Computer (CC), which allows one to program
custom CS logics for individual and structured tasks (an extension of Kucherbaev
et al. [2013])

—A business process model and notation (BPMN)-based modeling language equipped
with a dedicated visual editor that together allow one to program CC

—A publicly available, open-source implementation of CC on top of standard business
process management (BPM) technology that can easily be integrated into existing
software and processes and a respective, automated model compiler

—A concrete case study that demonstrates the applicability and effectiveness of the
approach in the context of crowd-based mining of mashup model patterns.

The rest of the article is organized as follows. In Section 2, we introduce CS and
our problem statement, and in Section 3, we derive requirements and explain how we
approach the problem. In Section 4, we present CC, whereas Sections 5 and 6 develop
the modeling language for CS tactics and processes. In Section 7, we describe the
implementation of our prototype, which we evaluate in Section 8 with the use case. We
discuss limitations and related work in Sections 9 and 10, then anticipate some future
work in Section 11.

2. CROWDSOURCING: CONCEPTS AND THE STATE OF THE ART

CS is a young yet already complex practice, especially with regard to the different ways
in which work can be outsourced and harvested. In the following, we conceptualize the
necessary background and define the problem that we approach in this article.

2.1. Crowdsourcing Tasks

The crowdsourcing of a task using a platform typically involves the steps illustrated
in Figure 1 (not all steps are mandatory). The crowdsourcer publishes a description
of the task (the work) to be performed, which the crowd can inspect and for which

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:4 S. Tranquillini et al.

Fig. 2. Schemas of the most prominent tactics to crowdsource work.

it possibly can express interest. In this step, the crowdsourcer typically also defines
the reward that workers will get for performing the task and how many answers he
would like to collect from the crowd. Not everyone in the crowd may, however, be
eligible to perform a given task, either because the task requires specific capabilities
(e.g., language skills) or because the workers should satisfy given properties (e.g., only
female workers). Deciding which workers are allowed to perform a task is commonly
called preselection, and it may be done either by the crowdsourcer manually or by the
platform automatically (e.g., via questionnaires). Once workers are enabled to perform
a task, the platform creates as many task instances as necessary to process all available
input data items and/or to collect the expected number of answers. Upon completion of
a task instance (or a set thereof), the crowdsourcer may inspect the collected answers
and validate the respective correctness or quality. The crowdsourcer typically rewards
only work that passes the possible check and is of sufficient quality.

2.2. Crowdsourcing Tactics

Depending on the acceptance criteria by both the crowdsourcer and the worker to
enter a mutual business relationship (after all, this is what CS is about), different
negotiation models may be adopted to crowdsource a piece of work. For simple tasks
(e.g., tagging a photo), it is usually not worth it to start a dedicated negotiation process;
more complex tasks (e.g., designing a logo or developing a piece of software), instead,
may justify a process in which crowdsourcer and worker commonly agree on either the
quality of the delivered work or its reward. Since it is the crowdsourcer who starts the
CS process and approaches the crowd, we call these negotiation models crowdsourcing
tactics. Three major tactics have emerged so far (Figure 2 illustrates the relationship
workers–tasks–task instances):

(1) Marketplace: The marketplace tactic [Ipeirotis 2010] targets so-called microtasks
of limited complexity, such as tagging a picture or translating a piece of text, for
which the crowdsourcer typically (but not mandatorily) requires a large number of
answers. Usually, the acceptance criteria by the crowdsourcer for this kind of tasks
are simple and clear, such as all answers are accepted (e.g., subjective evaluations
or opinions) or only answers that pass a given correctness check are accepted (e.g.,
a given answer is similar to answers of other workers; a worker answered correct to
randomly injected tasks with known answers). Rewards for microtasks commonly
range from nothing (workers perform tasks for fun or glory), to few cents or dollars,
without any margin for negotiation. If workers find the offer fair, they perform the
task; otherwise, they skip it. Prominent examples of CS platforms that implement

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:5

Fig. 3. A simple CS process in BPMN [Object Management Group 2011] inspired by Little et al. [2010b]:
the text recognition task is iterated automatically until there are no doubts left about the correct wording.

the marketplace tactic are Amazon Mechanical Turk (https://www.mturk.com), Mi-
croworkers (http://microworkers.com), and CrowdFlower (http://crowdflower.com).

(2) Contest: The contest tactic [Cavallo and Jain 2012] is particularly suitable to cre-
ative tasks for which the crowdsourcer knows the budget he is willing to spend but
does not have clear criteria to decide which work to accept. Designing a logo and the
layout of a Web page are examples of tasks that fall into this category. To enable the
crowdsourcer to clarify his criteria, this tactic invites workers to conceive a solution
to a task and to participate with it in a contest. Once a given number of contri-
butions or a deadline is reached, the crowdsourcer can inspect all contributions
and choose the solution he likes most, thereby electing the winner of the contest
(there could be multiple winners). Only the winner is rewarded. Examples of CS
platforms that implement the contest tactic are 99designs (http://99designs.com),
InnoCentive (http://www.innocentive.com), and IdeaScale (http://ideascale.com).

(3) Auction: The auction tactic [Satzger et al. 2013] targets tasks for which the crowd-
sourcer has relatively clear acceptance criteria but for which he is not able to
estimate a reward. Coding a piece of software is an example of this kind of task. An
auction allows the crowdsourcer to publish his requirements and allow workers to
express the reward for which they are willing to perform the task. Typically, but not
mandatorily (this depends on the adopted auction model), the worker with the low-
est offer is assigned the task and is paid accordingly upon delivery of the agreed-on
work. An auction can thus be seen as a combination of a contest (to win the auc-
tion) and a marketplace task with a predefined worker assignment (to perform
the task). An example of an auction-based CS platform is Freelancer (http://www.
freelancer.com), which allows programmers to bid for the implementation of soft-
ware projects.

The latter two tactics aim to produce one result that satisfies the crowdsourcer’s
need. The marketplace tactic, instead, often aims to produce a large number of results
that jointly satisfy the crowdsourcer’s need. For instance, the quality of a translation
is higher when more workers contribute to it.

In this article, we do not focus on the analysis of which tactic is most effective for
which task type (see, e.g., Hirth et al. [2013]). Rather, we aim to enable the flexible
design of tactics, which in turn enables answering these and other research questions
more efficiently. We specifically do so by focusing on how to aggregate results and
coordinate workers, which typically is out of the scope of CS state-of-the-art platforms.
We believe that support for different tactics (the preceding three plus custom ones) and
for aggregating results and coordinating workers is crucial for the CS of work that is
complex, as described next.

2.3. Crowdsourcing Processes

Figure 3 shows an example of how to iteratively crowdsource the recognition of a line
of text using microtasks until the last worker has no doubts left. As illustrated by
the model, translating the text may be more complex than a single task: it may in-
volve multiple instances of the text recognition task and possibly different workers. It

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

https://www.mturk.com
http://microworkers.com
http://crowdflower.com
http://99designs.com
http://www.innocentive.com
http://ideascale.com
http://www.freelancer.com
http://www.freelancer.com

7:6 S. Tranquillini et al.

furthermore requires passing data from one task instance to another, so as to incre-
mentally improve the translation. We call such kind of structuring of multiple crowd
tasks and task instances to achieve a common goal a crowdsourcing process.

CS processes are not supported by the CS platforms referenced earlier. The emer-
gence of programming frameworks and higher-level platforms built on top of these
CS platforms (most notably, Mechanical Turk) and extending them with basic process
management features, however, evince the need for the automation of these kinds of
CS processes [Little et al. 2010b; Ahmad et al. 2011; Dean and Ghemawat 2008; Kittur
et al. 2011; Kulkarni et al. 2012; Kittur et al. 2012].

The state-of-the-art frameworks/platforms aim to facilitate the CS of individual tasks
that require splitting and the coordination of split tasks (e.g., to collect separate feed-
back for a large number of photos), typically inside an own, proprietary environment.
However, there is a set of areas that may benefit from processes that are more advanced
than these, such as:

—Product design: Early feedback to new products is crucial to success. Integrating
crowd tasks for the collection of feedback, acceptance studies, or testing into produc-
tion processes may represent a significant competitive advantage.

—Social marketing: Marketing campaigns are increasingly conducted online. The in-
tegration of CS into common marketing processes may allow organizations to boost
and monitor their social presence.

—Idea management: Increasingly, organizations engage the crowd in the ideation of
new products or services. Common social networks do not provide adequate support
for this, and idea management systems may be too rigid. Custom CS processes may
make the difference.

—e-Democracy: CS may enable the participation of the civil society to politics. How to
involve society (e.g., via voting or promoting petitions) is as crucial as election laws.
Each party may have its own preferences and goals (i.e., CS processes).

—Human computation: Despite the increasing computing power of machines, there
are still tasks that only humans can solve, such as telling whether a portrait photo
is beautiful or not. Advanced CS processes enable the flexible integration of both
humans and machines, unleashing the computing power of both.

What is missing to bring CS to these areas is (1) support for CS processes that
are integrated with common BPM practices [Weske 2007] able to seamlessly bring
together the crowd, individual actors, and the machine, and (2) support for crowd tasks
with different CS tactics inside a same process, depending on the specific needs of
the crowdsourcer. The three tactics described earlier are just the most prominent ones
that have emerged so far. They are typically hard coded inside their CS platforms, and
each platform has its own tactic with proprietary preselection, quality assessment, and
rewarding logics that require a significant amount of manual labor by the crowdsourcer.
It is not possible to freely choose and fine-tune how to negotiate a task with the crowd.

The most pragmatic approach to the problem so far is the one by CrowdFlower, which
has a set of dedicated CrowdFlower employees working collaboratively with its biggest
customers to process data for their most complex jobs/processes. The recent Crowd-
Flower Labs initiative (http://www.crowdflower.com/blog/introducing-crowdflower-
labs) eventually aims to bring some level of automation to key customers.

The process in Figure 4 illustrates an example of a CS process. It models a logo
evaluation procedure where the crowd judges a logo that the crowdsourcer (e.g., a design
studio) wants to be assessed. The first two tasks model the upload and evaluation of the
logo and respectively are a human task and a crowd task. The third task in the process is
a script/machine task to compute the average of the votes that are given by the crowd.
The process is closed by a human task where the crowdsourcer inspects the results

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

http://www.crowdflower.com/blog/introducing-crowdflower-labs
http://www.crowdflower.com/blog/introducing-crowdflower-labs

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:7

Fig. 4. A CS process involving different actors (humans, machines, and the crowd) and possibly different
CS tactics.

of the assessment, the list of the votes, and their average. Human tasks are “typical
‘workflow’ tasks where a human performer performs the task with the assistance of a
software application” [Object Management Group 2011]. Crowd tasks are performed
voluntarily by workers of the crowd. The crowd task in the model internally adopts
a custom tactic defined by the crowdsourcer that resembles a common marketplace
tactic (e.g., without validating results but simply paying all participating workers).
The script/machine task is a standard BPMN component that contains a script written
by the modeler and later is executed by the BPMN engine.

2.4. Problem Statement

The problem that we approach in this article is the design of a model-driven develop-
ment and execution environment for the implementation of (1) advanced CS processes
and (2) custom CS tactics. The work does not focus on any specific application domain
(e.g., Hoßfeld et al. [2014a] provide a good overview of CS practices in the domain of
multimedia quality evaluation); the work rather aims to provide an enabling technology
for the development of flexible, highly tailored CS instruments for all kinds of domains.
In addition, we do not further elaborate on how to most effectively describe tasks or
how to fine-tune rewards, so as to maximize crowd participation or quality. These are
aspects that very strongly depend on the specific task to be crowdsourced, and good
studies of the topic already exist [Ipeirotis et al. 2010; Dow et al. 2012; Allahbakhsh
et al. 2013].

Next, we summarize the set of core requirements that we identify and explain how
we tackle the problem.

3. MODELING AND ENACTING ADVANCED CROWDSOURCING PROCESSES

Supporting the modeling and enactment of CS processes is a complex task, especially
if the aim is to cater to both CS processes and CS tactics in an integrated fashion
and with a similar level of abstraction. We assume that the crowdsourcer interested in
this kind of CS support has a working background in business process modeling and
management, basic knowledge of CS, and the skills necessary to develop his own Web
pages for data collection. For simplicity, we use the term crowdsourcer to refer to both
individuals and groups of collaborating individuals with these skills and who want to
crowdsource work.

Experience has shown that the CS of any task that is not as trivial as filling out a
questionnaire or asking workers to like a Facebook page requires the implementation
of custom task logics and designs, typically in the form of Web pages to which workers
can be forwarded from within CS platforms. We therefore assume that CS tasks are
implemented by the crowdsourcer and that the CS platform (CC) focuses its attention
on the coordination of work.

In line with this choice, we further assume that CC does not manage data, as such
are directly managed by the CS task pages. CC concentrates on the management of
metadata, such as references to the actual data and process runtime data. This allows

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:8 S. Tranquillini et al.

us to keep CC lightweight and the crowdsourcer to not lose control of the data. The
alternative would be to also host the actual data on CC. However, this would require
the availability of considerable amounts of data storage (expensive) and may imply
slow task deployments. More importantly, if CC does not store any potentially sensible
data, such as personal or protected data, the crowdsourcer has a higher trust in the
platform, and we do not have to worry about the respective legal aspects.

3.1. Requirements

Given these assumptions, we derive the following requirements for the implementation
of advanced CS processes:

R1 Crowd tasks. The crowdsourcer must be able to properly describe tasks and link
them to external task pages.

R2 Metadata exchange. CS task pages must be enabled to exchange metadata with
CC, so as to allow CC to coordinate tasks and propagate data.

R3 CS tactics. The tactics used to crowdsource a given task may differ from task to
task. The crowdsourcer must therefore be able to design custom tactics, including
custom quality assessment and rewarding logics.

R4 Human tasks. These are used when a task has to be executed by a designated
human actor (not the crowd), such as the crowdsourcer or an external expert.
Supporting human tasks is thus necessary to allow arbitrary human actors to
participate in a CS process, such as to validate task outputs.

R5 Machine tasks. Similarly, it is necessary to support machine tasks that enable
the integration of computations performed by a machine, such as an operation to
compute the average of a series of data extracted from crowd-provided data.

R6 Control flow. Processes are composed of a set of tasks that need to be coordinated.
It is necessary to be able to specify the order in which tasks are executed and
possible decision points that allow one to split and merge the execution flow.

R7 Dataflow. Tasks may consume data as input and produce data as output. It is thus
necessary to enable the crowdsourcer to clearly define which data are produced
and consumed by which task and specify suitable data propagation logics.

R8 Data management. CS typically produces large amounts of data. Propagating data
among tasks with different data constraints (e.g., show only three photos out of a
given set of photos) requires being able to suitably cut, slice, merge, and format
data.

Concretely, enabling a crowdsourcer to crowdsource advanced CS processes therefore
asks for the design and implementation of the following:

R9 Modeling language. The model-driven design of CS processes with the preceding
features requires the conception of a formalism that allows the crowdsourcer to
model her own CS processes (BPMN4Crowd).

R10 Modeling editor. To turn the modeling language into an instrument that can also
be used in practice, it is necessary to equip the language with a suitable graphical
editor that allows the crowdsourcer to model CS processes.

R11 Runtime environment. The execution of CS processes then requires the imple-
mentation of a runtime environment that must be able to cater to the preceding
features. We call this environment Crowd Computer.

R12 Deployment. Turning a high-level process model into a running process requires
the implementation of a dedicated model compiler and support for the automatic
deployment of the generated artifacts.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:9

Fig. 5. High-level architecture for the design and enactment of flexible CS processes.

3.2. Approach

Figure 5 illustrates our proposed architecture to approach the preceding requirements.
It is divided into three parts: design, deployment, and execution.

The design of CS processes starts from the design of CS tasks. These can be imple-
mented by the crowdsourcer as regular Web pages using her preferred Web development
environment (R1). For the exchange of metadata between task pages and CC, a dedi-
cated JavaScript task manager API implements the necessary interface (R2). For the
modeling of CS processes and tactics, we specifically extend BPMN [Object Manage-
ment Group 2011]. The rationale of this choice is that BPMN already satisfies some
of the requirements outlined earlier: it supports human tasks (R4) and machine tasks
(R5), and control flow (R6) and dataflow (R7) constructs, and its native extensibility
allows us to implement custom task types for CS tasks (R1) and data management oper-
ations (R8), which are not supported by the language. This extended version of BPMN
represents BPMN4Crowd (R9), which we accompany with a dedicated BPMN4Crowd
editor for the visual design of CS processes and tactics (R10).

BPMN4Crowd is specifically tailored to the needs of CS (the crowd, CS tasks, quality
assessment, rewarding, data transformations) and aims to abstract them with intuitive
constructs. In Kucherbaev et al. [2013], we proposed a structured approach for the
modeling of CS processes, which we refine in this article. Specifically, BPMN4Crowd
distinguishes three conceptual modeling layers that foster the separation of concerns:

—CS processes: These are the highest level of abstraction and represent the main
processes to be automated. The crowdsourcer models the control flow (R6), dataflow
(R7), CS tasks (R1), human tasks (R4), machine tasks (R5), and data transformation
tasks (R8) that compose the CS process and configures the tactics of CS tasks (R3)
and the exchange of metadata (R2).

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:10 S. Tranquillini et al.

—CS tactics: The second level of abstraction focuses on the tactics (R3). The crowd-
sourcer decides how to approach the crowd and how to manage crowd tasks. Tactic
models express interactions with the APIs of CC (R11).

—Validation and rewarding logics: The third and lowest level of abstraction hosts
the models of the different quality assessment and rewarding processes that can be
reused when designing tactics (R3).

In this article, we specifically aim to ease the design of these kinds of processes.
Tactics and validation/rewarding logics (R3) are particular processes that are not easy
to model. We allow the crowdsourcer to develop his own tactics and logics, but we also
provide a set of predefined tactics and logics that can easily be reused via suitable
configurations of the CS processes. Low-level models serve as libraries to higher levels.
We opted for a consistent approach to express logic throughout the whole platform
(models) and to allow crowdsourcers to implement their very own validation logics.
This acknowledges that we would not be able to predefine all possible validation logics
and, at the same time, enhances the reusability of BPMN4Crowd processes.

For the execution of CS processes, we provide CC (R11), which internally uses a
standard BPMN engine for process execution plus a set of CC APIs for the management
of the CS aspects not supported by the engine, such as metadata management, crowd
management, and quality assessment. CC comes with a front-end that can be used by
the crowd to discover and perform tasks. The crowdsourcer can start and stop tasks,
assign them, approve or reject results, and reward workers, and is able to keep track
of work that is assigned, done or pending, and of the performances of each worker.
The compiler and deployer automatically translate the models into instructions for CC
(R12).

4. THE CROWD COMPUTER

CS work requires a CS platform to advertise, assign, perform, and reward work (i.e.,
CS tasks). With existing platforms, it is not possible to design one’s own tactics for
tasks, and crowdsourcers have to live with predefined choices (e.g., the type of payment
method) and limited customization capabilities, and they are required to use different
platforms if they want to crowdsource work using different tactics (e.g., inside a CS
process). CC aims to overcome these limitations by (1) singling out as APIs all of the
basic features needed to crowdsource work (task, crowd, quality, and reward manage-
ment); (2) not hardcoding any CS tactic that would in any way limit someone; and (3)
enabling the crowdsourcer to assemble her own tactics, coordinating API calls and CS
processes on top.

Figure 6 illustrates the internals of CC. The approach to enable the flexible con-
figuration of custom CS tactics is to use a BPMN engine that can be programmed
with process models. The latter are stored in a dedicated process repository and may
contain tactics, validation, and CS process definitions. The tactics rule the low-level
interaction with the internal APIs, whereas the validation and CS processes define
possible complex CS logics on top. The APIs maintain internal metadata about tactics
and processes in execution. CC front-end acts as interface toward the crowd and the
crowdsourcer. It embeds the crowd task pages used to collect results from workers and
has a management user interface (UI) for the crowdsourcer.

Running a CS process in CC therefore requires the availability in the process repos-
itory of one process model for the CS process, one process model for each tactic used in
the CS process, and one process model for each task validation logic used in the tactics.
All models are instantiated hierarchically by the BPMN engine, beginning with the CS
process model, which is started via CC front-end or the BPMN engine. The task, crowd,
quality, and reward manager APIs are called from within the CS process by suitable

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:11

Fig. 6. Functional architecture of CC.

machine tasks. The four APIs all work on an integrated metadata repository, provid-
ing for the synchronization of the respective CS operations. Each crowd task inside
the CS process causes the BPMN engine to instantiate a new process implementing
the respective tactic, which in turn may instantiate a process for the validation of
task outcomes. The instantiation of a tactic process causes CC front-end to publish
the respective task. This allows workers to pick tasks and perform them through the
embedding of the external task pages. Submitting work through a task pages notifies
the task manager API and BPMN engine of the completion and progresses the state of
the engine and the metadata repository. A CS process terminates when all internally
instantiated subprocesses have completed, and now further tasks are to be processed.

We discuss the internal metadata model and APIs next; then we explain the structure
and logic of crowd task pages for CC. The following sections explain how to implement
tactics and CS processes.

4.1. Metadata Model

To support the integration of APIs and the correct execution of tactics and processes, CC
implements the metadata model in Figure 7. The model distinguishes the description of
tasks, tactics, and processes (instruction register) from their execution (status register).
The purpose of the model is to focus on metadata and not on data—that is, CC does
not necessarily manage actual data as produced by the workers during task execution.
It only keeps track of respective metadata, such as the keys that identify answers by
workers inside the crowd task data maintained by the crowdsourcer.

The core element of the instruction register is the TaskDefinition, which contains all
information necessary to describe a crowd task, such as name, description, and type
(human/machine/crowd). Each task is part of a Process owned by a User. Users have
a profile composed of UserProfileParameters (used for preselection) and are connected
to task definitions through a UserRole, which tells which role a user plays in which
process (e.g., for human tasks). Task definitions comprehend the ParameterTypes of
their configuration and runtime parameters (e.g., for the invocation of machine tasks
or for control flow decisions), as well as the DataObjectTypes and DataPropertyTypes
of the inputs and outputs consumed/produced by the task execution. Data objects store
references to the external crowd task data repository and enable data splitting and
merging inside CC. Data properties enable the association of descriptive information
to data objects and enable, for example, the definition of custom quality controls and
the correlation of task instances if multiple instances work on a same object.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:12 S. Tranquillini et al.

Fig. 7. Metadata model underlying the execution of tasks, tactics, and processes in CC.

The status register contains the runtime data. The Task represents a task instance, it
contains information about the task status and is associated to a user (e.g., a worker). In
addition, it is associated with the set of Parameters and DataObjects carrying concrete
input and output data, as well as the DataProperties describing the produced data
objects. The RewardPayment stores information about the reward that is given to
workers, which can be used with different payment_services.

4.2. Programmable APIs

The metadata modeled in Figure 7 is created and consumed by the processes running
in the BPMN engine (tactics, validation, and CS processes), mediated by the internal
APIs of CC. In other words, CC can be “programmed” via process models coordinating
the invocation of API operations representing the “instruction set” of CC. The goal of
CC is to keep the instruction set focused to the core CS aspects and hence simple,
manageable, and efficient. The four APIs are as follows (see Figure 6):

—Task manager: The task manager comprises a set of operations for task life cycle
management and data propagation among tasks. Operations are instantiating tasks,

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:13

assigning tasks to workers, canceling tasks in execution, rerunning them, enacting
machine tasks, and so forth. Each task can be instantiated multiple times, so as to
collect the amount of data that the task is required to produce as output. The API
parses the task definitions with their configuration parameters, runtime parameters,
and input and output data object specifications, as well as manages the respective
runtime values.

—Crowd manager: The crowd manager is in charge of human resource management
and worker preselection. It comprises a set of operations for the management of
users, such as resolving user roles, preselecting potential workers, tracking which
user executed which task, sending direct invitations to people, ensuring separation
of duties, and so forth.

—Quality manager: Typically, but not mandatorily, only work that passes a quality as-
sessment is rewarded. The quality manager provides for the necessary management
of quality metadata for crowd tasks. It allows one to (1) represent quality as a nor-
malized value in a range from 0 (min) to 10 (max), (2) set a minimum threshold level
below which work is rejected and not rewarded, and (3) assign quality assessments
to task instances at runtime. How to set threshold levels and assess quality (i.e., the
semantics of quality) is decided by the crowdsourcer at design time and assessed via
custom human/machine or CS tasks at runtime, respectively.

—Reward manager: The reward manager provides for payment management and is in
charge of keeping track of which task instances have been rewarded (i.e., paid) and
how. Each task may have an associated reward and payment service, and payments
may occur for individual task instances, bundles of task instances, and so forth. CC
does not impose any reward logic; it can be specified ad hoc or instantiated from
reusable model templates. Additionally, CC does not impose any concrete payment
platform (e.g., PayPal, VISA); such can be chosen and plugged in by the crowdsourcer.
Again, the semantics of the Reward_amount property of tasks is decided by the
crowdsourcer.

In Table I, we summarize the most important operations accessible via the APIs
that we use throughout this article. Discussing all operations is beyond the scope of
this article, so we refer the reader to http://apidocs.crowdcomputer.org for the complete
details.

4.3. Crowd Task Pages

The front-end of CC is implemented as a regular Web application. For the front-end to
be able to visualize a task page, which is also a Web application, it must be published
online and embeddable into an iframe inside the front-end’s own UI.

In the most simple case, a task page is a static HTML Web form hosted online.
For more complex task pages with their own application logic, the application logic
should be integrated with that of CC to enable the exchange of data and/or metadata,
as described in Figure 8. To support this integration, the task pages must contain a
task manager client (a JavaScript library in the current implementation). This client
allows the task page to communicate with the task manager API of the embedding
CC front-end. Specifically, when a task is instantiated and its UI is embedded into the
iframe, the task manager API loads from the metadata store the data identifiers of the
input data objects to be processed by the task page (if inputs are to be processed) and
sends them to the task manager client. The task page receives the identifiers, loads
the corresponding data from its internal data store, and displays them to the worker.
Upon the completion of a worker’s feedback, the task page stores the results in its data
store and sends the respective result identifiers back to the task manager API, which
in turn stores them into the metadata store and marks the instance as executed.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

http://apidocs.crowdcomputer.org

7:14 S. Tranquillini et al.

Table I. Excerpt of the Most Important Operations of CC APIs

API Operation Input Output Description
Task create Description, task page

URL, number of
instances, deadline,
validation strategy,
reward, reward
strategy, preselection
condition

task id Creates a task in CC’s instruction
register.

start task id
—

Starts a task and makes it visible to
the crowd.

stop task id
—

Stops a task and makes it invisible to
the crowd. Pending feedback for
stopped tasks is not accepted.

createInstance task id task
instance
id

Creates an instance of a task, starts
it, and makes it available to workers
for execution.

stopInstance task instance id
—

Stops the specified instance.

assignInstance task instance id, user
id —

Assigns a task instance to a user.

storeResult task instance id, data
—

Stores the data for the specified task
instance.

updateInstance task instance id, data
—

Updates the status of the specified
instance.

updateInstances task instance ids
(array), data —

Updates the status of all specified
instances.

Crowd preselect user id, task id true/false Runs the preselection logic for the
given user to check if he or she is
allowed to perform the given task.

Quality set task instance id, data
—

Assigns the quality-level data as
quality assessment to the selected
instance.

Reward give user id, reward — Assigns a reward to a worker.

Note: Each API implements additional operations that are not shown here. In this table, we concentrate on
those operations that are used to model the processes presented later in the article.

5. MODELING CROWDSOURCING TACTICS

In the introduction to this article, we stated that a crowd task is atomic or indivisible,
referring to the perspective of the worker who executes the crowdsourced work. Yet
it is important to note that enacting a crowd task in practice is not an atomic action
executed only by a single actor. It rather is a composition of different tasks possibly
executed by multiple actors, namely the worker, the crowdsourcer, and the platform.
We call this composition the tactic, and it models how to crowdsource a given task.

Throughout this article, we introduce BPMN4Crowd, an extension of BPMN specif-
ically tailored to the needs of CS, and show how to develop custom tactics. First, we
provide a summary of the basis of BPMN.

5.1. Background: BPMN

BPMN [Object Management Group 2011] is a standard for business process model-
ing that provides a graphical, flowcharts-based notation to specify business process

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:15

Fig. 8. Implementation logic of task pages to be included in and managed by CC.

Fig. 9. The core constructs of a BPMN process diagram.

diagrams. Processes are used to model the interactions and business operations that
actors have to perform to achieve a given goal. The BPMN notation is composed of four
classes of components: flow objects, connecting objects, swim lanes, and artifacts.

Figure 9 illustrates an example of a BPMN process. The model shows a process in
which an insurance company opens a new case for a hypothetical user. Inside the pool
company, there are two lanes that represent two actors. The first is the employee who
opens the case and validates the requirements. The second lane models the signature
system, which stores the signature given by the user. The second pool models the user’s
actions: he waits for a notification telling him to sign a document, signs it, and sends
the signature back to the signature system. When the signature is stored and the
requirements are validated, the process ends.

This small examples helps us introduce the BPMN constructs that are used in this
article, concretely the following classes. Flow objects contain the main elements to
create a process: events, activities, and gateways. Events affect the control flow—they
have a cause and an impact and are used to start or end a process and to intercept
or trigger intermediate events; their shape is a circle. Activities are used to model the
work to be performed (i.e., the tasks). There are various types of tasks: among them

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:16 S. Tranquillini et al.

Fig. 10. The basic structure of BPMN4Crowd process diagrams for tactics. Please note that the model is not
a correct, executable BPMN model; it is a template that needs to be instantiated into a correct model.

are human tasks, executed by a person, or machine tasks, executed, for example, by
a Web service; the shape of tasks is a rounded rectangle with an icon in the top-left
corner that identifies the type of task. Gateways represent decision points, such as xor
or and conditions; their shape is a diamond. The group of connecting objects contains
elements that represent sequences, messages, and dataflows by means of arrows. The
sequence (control) flow is modeled with a solid line; the message flow, which models
a message exchanged among process participants, is a dashed arrow; the association,
used to associate data and artifacts with a task (thus the data flow), is a dotted arrow.
Swim lanes (short lanes) separate the activities of different process participants (also
called actors). Pools group lanes/participants into organizations (e.g., a company or
institution). Artifacts are additional elements of the diagram that are used to add
context (e.g., a descriptive comment). The most important element of this category is
the data object, which shows how and which data is consumed or produced by the tasks
of the process.

5.2. Basic Structure

Modeling a CS tactic requires complying with a set of conventions that guarantee CC
is provided with all of the information required to correctly publish, assign, collect,
assess, and reward work. We summarize these conventions in the basic tactic structure
(a template) depicted in Figure 10. Note that we mark CC API invocations with a
CC logo in the top-left corner; technically, these tasks correspond to common machine
tasks, but for a better readability of the models, we explicitly distinguish those tasks
that interact with CC-internal APIs from those that interact with humans, external
services, or the crowd.

The process diagram is articulated into four pools, an input data artifact, and a
minimum set of tasks that invoke the operations of CC APIs. The pools correspond to
the BPMN engine orchestrating the tactic, CC front-end mediating between the tactic
and the crowd, the task UIs (crowd task pages) for performing work, and the validation
logics. The task input data carries the input data for the task to be crowdsourced. The
five tasks serve the following purpose:

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:17

Fig. 11. Simplified process diagram of the marketplace tactic with multiple workers performing tasks in
parallel. For a better readability, we omit the input/output data objects, data-flows, and API call details.

—Pick task (no API call need, optional) receives the identifier of the worker that decides
to work on a given task listed in CC front-end. The construct is a shorthand for the
specification and configuration of a receive message event. Skilled modelers can
directly use any of receive message events of the BPMN (e.g., message start event or
message receive event).

—Create instance (Task.createInstance and Task.assignInstance, mandatory) uses
the task metadata from CC’s internal data store to create an instance of the task
and assign it either to the worker identified via a prior Pick task or by automatically
assigning a worker (e.g., via email).

—Receive result (Task.storeResult, mandatory) represents the actual execution of the
task instance. It interacts with the task UI and manages the data identifiers of the
task inputs and outputs (metadata) as explained earlier.

—Validate result (Quality.set, optional) assigns a quality level to a data object pro-
duced by the crowd. The task internally invokes an external validation process (cus-
tom or chosen from a library) that invokes the Quality.set API.

—Reward result (Reward.give, optional) assigns rewards to workers. Configurable re-
warding logics (functions of the quality assessment values) decide for each worker
whether to give or reject the reward and possibly hand the reward out.

It is important to note that the basic tactic structure is not executable as is. Rather,
it lists the minimum (and typical) ingredients necessary to design a correct tactic.
It is clear that this basic structure needs to be extended and turned into a correct,
executable process to be applicable in practice.

5.3. Tactics Models

In the following, we show what it means to develop an executable tactic. We model
examples of the most important tactics, namely marketplace, contest, and bid [Ipeirotis
2010; Cavallo and Jain 2012; Satzger et al. 2013] described in Section 2.2. In addition,
we also model a mailing list tactic, which can be useful in CS scenarios that require
targeting a precise group of people, such as for user studies.

This set of tactic models is not meant to be complete; rather, it is a set of examples
of how one’s own custom tactics can be implemented by the crowdsourcer. All tactics
can be reused as they are or extended and adapted to new needs. We recall that a
CS process may contain multiple crowd tasks, whereas each crowd task may have its
own tactic. This means that within one CS process, multiple crowd tasks with different
tactics may coexist, yet each crowd task has exactly one tactic.

5.3.1. Marketplace. The marketplace [Ipeirotis 2010] is one of the most common tactics
for CS work. Figure 11 shows a process that represents a possible implementation.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:18 S. Tranquillini et al.

The model expresses the perspective of the BPMN engine inside CC. The process
starts with CC loading the task definition stored in the metadata store. This operation
interrogates the Task API. The task definition is used to create task instances, which
are managed by the multi-instance subprocess in the figure. In the subprocess, the
first operation creates the task instance, then the subprocess waits for a worker to
accept the task. Upon selection by a worker, CC tries to assign the instance by first
performing the possible preselection test (part of the Assign instance task): if the worker
meets the requirements, the instance is started and assigned to the worker; otherwise,
the instance is released and the process goes back waiting for another worker. If the
instance is assigned, CC waits until the worker submits the result, which updates the
task instance information through the Task API. In the case of a timeout (if a worker
does not submit results within a predefined time interval), CC marks the task instance
as expired and the subprocess terminates. If the task instance is instead successfully
completed, the process starts the validation task, which is another subprocess. Then,
the process rewards workers using the Reward API. We describe examples of validation
processes and rewarding logics later.

The subprocess that manages the task instances has a timer that is triggered if
instantiated tasks are not accepted or completed within a given time window. The timer
triggers a task that marks all remaining instances as expired. Only if all instances are
completed or expired does the process (and the CS task) end.

This is only one possible implementation of the marketplace tactic. Many others
exist. For example, we can define a minimal marketplace as a marketplace with a
single instance and without validation and reward. An implementation of this tactic
needs to have a task to retrieve the task definition, a task to create an instance (without
the subprocess), a task to assign the instance, and a task to receive the results. This
corresponds to the minimal set of mandatory tasks of our basic tactic structure.

5.3.2. Contest. The contest tactic [Cavallo and Jain 2012] makes workers compete with
their work for a reward. In Figure 12, we model the process of a typical contest tactic.
The process is divided into two parts: the main process that is in charge of starting the
task, validating results, and rewarding workers and a subprocess that manages the
instantiation and execution of task instances. The subprocess is noninterrupting, which
means that workers can submit results in parallel until the expiration of a deadline.
Once results are collected, the process starts a validation subprocess to decide the
winner(s) and then rewards the winner(s). Differently from the marketplace tactic,
where the validation and reward logic are instantiated for each task instance, in a
contest, they are executed only once for all instances at the same time.

The Collect results subprocess models the collection of workers’ answers. It sets a
timer that, after a predefined amount of time (defined by the crowdsourcer), ends the
subprocess and closes the contest; this implements the deadline of the contest. Answers
from workers are collected only as long as the contest is open. This behavior is modeled
using an event subprocess (the dashed box) with a noninterrupting start message (the
dashed start message) that can be triggered many times in parallel by different actors.
The subprocess is thus executed every time an acceptance message arrives from a
worker.

Various implementations exist for the contest. For instance, we can again imagine a
minimal contest tactic, in which we remove the rewarding task. The other three tasks
cannot be removed from the main process, as they are all mandatory. The logic of the
Collect results subprocess is rather standard, and one cannot modify much. What a
crowdsourcer may want to change is the logic used to decide the winner. In a minimal
contest, this logic could be randomly picking a worker or selecting the first worker who
submitted something. In more complex and real scenarios, this logic may require the

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:19

Fig. 12. Process diagram of a possible contest tactic. The main process manages the overall flow, and the
subprocess manages the instantiation of tasks and the submission of results.

crowdsourcer or an external expert to select the winner, or it may ask the crowd to
rank the results, or it may use a machine task to compute the winner.

5.3.3. Auction. The auction tactic [Satzger et al. 2013] fundamentally is different from
the previous two tactics. Whereas in the marketplace and contest the reward is specified
at the beginning, in the auction the reward is the result of a process to be run. In CS,
auctions are usually executed in a reverse fashion, in which the winner is the worker
who offers to perform a task at less money (the bid) than the others. The (reverse)
English auction model allows workers to bid against each other for a fixed amount of
time and then the lowest bid wins. In the (reverse) Dutch auction, the crowdsourcer
specifies an initial reward and goes on raising it by a small amount until the first worker
accepts the contract; this worker wins the auction. This type of auctions requires a
significant amount of time to participate in the bid—time that is not paid and that
may discourage workers from participating. Another common model is the (reverse)
sealed first-price auction, in which the requester specifies the maximum amount of
reward that he is willing to pay, and the first worker bidding less than this value wins.
This tactic is, for example, often used by platforms with professional workers, such as
programmers or freelancers.

In Figure 13, we provide an example of process diagram for a sealed first-price
auction. The process shares common parts with the contest and the marketplace. From
the contest, it borrows the possibility to have multiple workers competing with their
bids (Check bids). The respective subprocess is therefore implemented similarly to the

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:20 S. Tranquillini et al.

Fig. 13. Process diagram of a sealed first-price auction tactic.

one of the contest tactic, with the difference that now it is a signal (the triangle) that
stops the subprocess execution. The signal is emitted as soon as a worker bids less
than the threshold, and the system creates an instance of the task and assigns it to the
winning worker. The main process then proceeds similarly to the marketplace tactic,
yet managing only a single task instance (the one of the winner of the auction). The
process ends with the usual validation of the work and the payment of the agreed-on
reward based on the quality assessment.

We already explained that many other possible auction processes can be conceived.
As for the minimal auction tactic, what can be eliminated is the Review result task,
assuming that the worker performs satisfactorily. The reward task is mandatory, as
the tactic is based on a negotiation of the reward. The bid logic (the subprocess) is most
open to variations; what we modeled here is one of the simplest logics.

5.3.4. Mailing List. This tactic is not a traditional CS tactic, yet it is a common and
very effective way of soliciting people to participate in some effort and get work done
(e.g., questionnaires or scientific studies). The logic of this tactic is the opposite of the
other tactics in that it actively pushes tasks to workers, whereas in the others, it is the
workers who pull tasks. Some platforms implement similar approaches—for example,
Mechanical Turk allows the crowdsourcer to assign a task to a specific person.

In Figure 14, we model the process of a possible mailing list tactic. Task instances
are created automatically and assigned to selected workers in advance (Assign Tasks
subprocess). The assignment keeps track of which user is assigned which instance—
information that may be useful for validation and reward. Then the platform waits for
workers’ feedback, up to a given timeout. Each time a worker submits work, the system
stores it, validates it, and rewards the worker. Generally, all workers are rewarded, if

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:21

Fig. 14. Process diagram of the mailing list tactic with two subprocesses.

a reward is offered at all. If a worker is not willing to participate, the system marks
the respective instances as expired after the timeout has expired.

As usual, different variations of this tactic may exist. For instance, we could anony-
mously invite people, such as by allowing the crowdsourcer to share a link to the task
that can be forwarded via email, independently of CC. For the minimal mailing list
tactic, it is enough to remove the validation and rewarding tasks.

5.3.5. Custom Tactics. The number of possible tactics to crowdsource a task—that is, the
number of possible negotiation models bringing together workers and crowdsourcers—
is unlimited. The preceding tactics represent the most common ones that have emerged
so far. Other tactics may feature moderator-based approaches, contests with groups of
winners, or tactics in which the reward depends on the assessment by a control group
or majority decisions [Hirth et al. 2013]. More advanced tactics may feature a two-
stage approach [Soleymani and Larson 2010; Hoßfeld et al. 2014b] in the assignment
of tasks to workers that, for example, use one task to assess the preparation/suitability
of workers and another task for the actual task of interest; access to the second task
is granted only to workers considered reliable enough in the first task (pseudoreliable
workers).

Sophisticated negotiation models may require complex implementations, raising the
doubt whether these are still tactics or already CS processes. Technically, it is fully
up to the crowdsourcer to decide how much complexity to put into the tactic and how
much of it to keep outside—that is, in the CS process. For the sake of reusability across
different CS processes, however, the more the negotiation logic is inside the tactic,
the better. Our recommendation is to aim at tactics that allow one, at the CS process
level, to focus exclusively on the integration of crowd tasks into bigger logics, possibly
containing other crowd tasks, without having to focus on how to actually crowdsource
work (selection of workers, quality control, rewarding).

5.4. Validation and Rewarding Logics

The tactic models described previously neglect the details of the last two aspects of CS:
validation and rewarding. Given their reusability across tactics, the respective logics
can be designed independently of the tactics and associated to them later (e.g., via sim-
ple configuration parameters). As highlighted in the basic tactic structure, validation
(quality assessment) logic can be as complex as full-fledged CS processes with different

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:22 S. Tranquillini et al.

Fig. 15. Example process diagrams of four validation processes involving different actors. All processes
produce a quality assessment value in output to be stored in CC’s internal metadata store.

actors involved; the rewarding logic is, instead, more of a simple configuration of how
to give a reward, once quality has been assessed. For both, CC implements a set of pre-
defined options, which we describe here. Custom validation logics can be implemented
similarly by the crowdsourcer.

5.4.1. Validation Processes. Validation processes have the goal of producing a quality
assessment for a given data object produced by the crowd. They are invoked by the
Validate Result task of the tactics, which also stores the assessment values in CC’s
metadata store upon the completion of the validation processes. The most common
quality assessment logics are the following (Figure 15):

(1) Expert validation: This validation involves the crowdsourcer himself or another
external expert. The process consists in a simple human task that asks the expert
to assess the data object and produces the assessment value as output. If the
assessment is positive, the work is accepted; otherwise, it is rejected.

(2) Marking: This approach asks the crowd to mark (rank) the work of a given worker.
The output is based on the average mark given by a set of workers: if such exceeds
a given threshold, the work is evaluated positively and otherwise negatively.

(3) Gold data: This validation is based on so-called gold questions (whose answers are
known in advance) that can be checked automatically by a suitable machine task
[Oleson et al. 2011]. Checking the answers to gold questions can be used to estimate
quality without analyzing the actual data objects. This validation is straightforward
and does not require additional time or human activities. The percentage of correct
gold answers is compared to the threshold (decided by the crowdsourcer) to decide
whether to accept or reject the whole data.

(4) Agreement: This validation requires the agreement on the quality of a data object
by at least two out of three judges, where judging is again crowdsourced (CS tasks).
If two workers immediately agree, the agreed-on value (true or false) is chosen as
output of the process. Otherwise, a third worker is asked to judge, and her judgment
is used as output since it surely agrees with one of the previous two.

Various other logics can be conceived and used to assess quality. It suffices to model
processes like the ones in Figure 15 (the next section provides the necessary modeling
constructs and conventions), which take a data object as input and produce a respective
quality assessment as output (recall Figure 10). This latter is stored as metadata and
used to decide who to reward.

In this respect, it is important to understand the relationship between validation
logics, tactics, and task types. The crowdsourcer chooses validation logics and tactics

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:23

depending on (1) the task type, (2) the desired quality level of results, and (3) the
available resources to spend. The use of gold data can, for instance, guarantee a good
level of quality of marketplace tasks, where it is possible to automatically evaluate
results against trusted data (e.g., sentiment analysis with only possible answers “pos-
itive,” “neutral,” and “negative”). More quality-critical tasks (e.g., nudity detection in
images uploaded on children’s Web sites) may require the use of an agreement logic
with redundancy of answers (higher cost). Gold data and agreement can also be applied
together to keep only agreed answers from a pool of workers checked against trusted
data. Marking works for tasks where it is not easy to evaluate results automatically
and instead a subjective evaluation is needed (e.g., voting for proposed ideas). Expert
validation usually takes place in contest and auction tactics for creative tasks (e.g.,
logo creation). In addition, marking and expert validation can be applied together in
contests, such as using markers to create a pool of top-k best results and an expert only
to select among the top ones to pick the winner.

5.4.2. Rewarding Logics. Rewards are important in CS, as they motivate workers to
perform tasks. The most used rewarding logics are as follows:

—All/none: This is the most trivial logic. All workers are paid (or none of them) inde-
pendently of whether the work is satisfactory or not. This choice is not used often,
but it can be executed automatically by a platform if no counterinstruction is given
within a predefined time window.

—Upon validation: The payment upon validation is perhaps the most commonly used
logic. Only the works that pass the validation step are rewarded. This type of strategy
works well with tactics where workers are rewarded only if the result is satisfactory.

—The best: Here, the reward is given only to the best among all workers submitting
work. This logic is generally adopted in tactics where workers compete for the reward
and thus send results for a same task where only one is accepted as correct.

In addition, reward logics can be complemented with other strategies, such as the
following:

—Bonus: The reward is fixed and specified when a task is created. However, workers
occasionally may provide astonishing results, and a bonus reward may be given to
selected workers to increment their overall reward.

—Milestones: Some tasks can require a long-lasting collaboration between the worker
and the crowdsourcer (e.g., writing a software application), which can be split into
milestones. In this case, the reward can be split into milestones as well. Before start-
ing the task, the crowdsourcer and workers agree on the milestones and deadlines;
at each milestone, the worker receives the corresponding reward.

With this set of reward logics, it is possible to configure most of the possible scenarios
that a crowdsourcer may face. All logics make use of the quality metadata of CC and
its configuration of reward payment services.

All of these rewarding logics are examples of logics already implemented in existing
platforms: the all/none and upon validation logics are most commonly implemented in
marketplace platforms, such as Mechanical Turk and CrowdFlower. The former can be
executed automatically by the platforms and the latter only upon an explicit judgment
expressed by the crowdsourcer. The the best logic is used in contest-based platforms,
such as 99designs. The milestones logic is used in auction platforms, such as vWorkers,
and the bonus logic is a crosscutting logic supported in several different platforms.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:24 S. Tranquillini et al.

Fig. 16. CS-specific notation for data objects and data transformations.

6. MODELING CROWD TASKS AND DATA TRANSFORMATIONS

With CC and the tactics, we now have almost all ingredients needed for the development
of advanced CS processes. What we still need to do is clarify how to use CS tasks in
practice inside CS processes and how to propagate and transform data.

6.1. Crowd Tasks

The core construct needed for the modeling of CS processes is the crowd task (recall
Figure 1), which represents the work to be crowdsourced. The construct does not differ
from a standard BPMN task only by its crowd icon but also by the fact that it actually
represents a process on its own (the process of the chosen tactic) that must be properly
configured before execution. A crowd task definition therefore comes with a set of
parameters for crowd-related information:

—Description: Short instructions that allow workers to understand and choose tasks
—Task page URL: The CS task page implementing the UI of the task
—Deadline: The date and time after which the task expires
—Tactic: The tactic process to be used as logic for the execution of the task
—Tactic parameters: Free input of custom parameters defined inside the tactic models

(e.g., ‘NumberOfInstances = 10’)
—Reward: The amount of the reward for the task (e.g., $10)
—Reward strategy: The strategy of the Reward Worker task (e.g., the best)
—Preselection condition: Boolean expression over user profile parameters (e.g.,
User.Gender = ‘Woman’ AND User.Language = ‘English’)

The CS and the orchestrating of work inside a CS process is thus as simple as
setting these properties for each crowd task of the process. However, the CS of work
via multiple crowd tasks may ask for proper data transformation logics.

6.2. Data Transformations

Crowd tasks usually ask workers either to produce some output that can be inspected
(e.g., photos or text) without input from the crowdsourcer or produce some output (e.g.,
tags or translations) given a dataset provided as input (e.g., photos or text). It is also
common that consumed and produced datasets are large and that crowd tasks work
with different input/output dataset sizes. For example, one task may ask workers to
upload one photo, whereas another task may ask them to compare two photos or select
the best out of three given photos. Input dataset sizes are usually fixed; output dataset
sizes may also be variable (e.g., a task may allow workers to upload a generic set of
photos). The mismatch that may arise between output and input dataset sizes asks for
proper data management operations.

BPMN has native constructs to specify data objects and associations of data objects
with tasks, with the association arrows specifying the dataflow of the process. Data
objects model individual objects (see Figure 9) or collections of objects (if marked with
the multi-instance label—that is, three vertical lines). To model collections of collec-
tions, in Figure 16(a) we define the set of sets data object. This allows us to model, for
example, 10 sets of three photos each to be crowdsourced using 10 instances of a given

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:25

Fig. 17. The different uses of the dataset splitting operator of BPMN4Crowd.

crowd task. Properly splitting, merging, and filtering datasets further requires a set of
dedicated operators; Figure 16 shows their constructs.

6.2.1. Splitting Datasets. The Split Data operation allows splitting datasets into subsets.
It takes as input a set of data objects and produces as output a set of sets. The operation
can be configured to use different splitting logics, as illustrated in Figure 17:

—SplitWith(n,r?): This function allows the crowdsourcer to specify the size of the output
sets; the number of produced sets depends on the size of the input dataset. The
optional parameter r specifies redundancy: if set, consecutive datasets will contain
r similar data objects. For instance, the operation is used when the crowdsourcer
wants to assign to each task instance a precise number of input data objects without
worrying about how many task instances need to be created.

—SplitInto(n,r?): This function splits the input dataset into n subsets of similar size.
The optional parameter r specifies redundancy: if set, consecutive datasets will con-
tain r similar data objects. The operation is used when the crowdsourcer wants to
control how many task instances will be created (one instance per subset).

—Combination(n): This function generates all possible combinations of size n from a
given dataset in input. Combinations are redundant in that they share repeated
elements. They provide for maximum redundancy with the minimum number of
output datasets.

6.2.2. Merging Datasets. The opposite of splitting datasets into subsets is merging a set
of subsets into an integrated dataset. BPMN4Crowd uses the Merge Data operation for
this purpose. The merging logic is unique and works at the data object level (it takes
all elements without distinctions), and no further configuration is required. It takes as
input a set of sets and produces a set of items. The operation can be used to recompose
the results of different task instances into a unique set of results.

6.2.3. Filtering Data Objects. Finally, the Filter Data operation allows the crowdsourcer
to filter data objects inside datasets. Filter conditions can be specified over the metadata
(e.g., data properties or quality assessments) associated with the data objects in CC’s
metadata store. Only data items that match the filter condition pass the filter. For
example, a filter can be used to filter out those data objects that have been evaluated
positively by the respective quality assessment process.

6.2.4. Modeling Example. We are now ready to refine the initial logo assessment exam-
ple described in Figure 4. Figure 18 illustrates the BPMN4Crowd model of the process
with the necessary data transformation operations in place. We recall that the crowd
task (Evaluate logo) asks workers to assess the quality of a logo, which as a result
produces a collection of marks. We assume that for this purpose we implement a task
page that shows the logo together with a form with a set of HTML radio buttons that
allow the worker to express her mark. Each task instance thus requires the logo as

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:26 S. Tranquillini et al.

Fig. 18. The CS process of the photo contest scenario modeled with BPMN4Crowd.

input and produces one mark as output. The logo is supplied by the requester upload-
ing it in the first task. To compute the average, we merge the marks into a unique
list (Merge results task) and use a machine task (executed internally by the process
engine, Compute avg votes) for the math. The average value can then be inspected by
the crowdsourcer via the process interface (last human task). The tactic of the crowd
task does not require the crowdsourcer to validate results and automatically gives, for
example, $0.05 to all workers.

7. IMPLEMENTATION

To ease the creation and execution of BPMN4Crowd CS processes, we implemented
three tools:

—A BPMN4Crowd editor to support the graphical design of CS processes
(http://editor.crowdcomputer.org); the editor is based on the Activiti BPMN modeling
tool (http://www.activiti.org).

—A BPMN4Crowd compiler to transform process models into executable BPMN pro-
cesses and configurations for CC, as well as a process deployer able to deploy CS
processes onto CC (http://compiler.crowdcomputer.org).

—An extended BPMN engine (based on the Activiti engine) that contains the library
of CC APIs that enable the communication between the engine and CC (http://
engine.crowdcomputer.org).

Next we present how we implemented the three tools.

7.1. BPMN4Crowd Editor

Given the intrinsic complexity of process editors, for the implementation of the
BPMN4Crowd editor we opted for the extension of the well-known Activiti Designer,
a BPMN plugin for Eclipse (http://www.eclipse.org). The tool supports the implemen-
tation of custom tasks, whereas it lacks support for other custom artifacts, such as
new data object constructs, and it does not implement all features of the standard
BPMN specification—for example, it does not support the noninterrupting event sub-
processes (useful for the tactics) nor the message end event (useful for the validation
processes). For this reason, the current implementation of the BPMN4Crowd editor
provides some of the BPMN4Crowd modeling features differently than presented be-
fore: extended data objects (sets and sets of sets) are not specified using data object
artifacts connected to tasks, but instead we use task parameters to declare data ob-
jects and specify dataflows. CS tactics and quality validation logics can be modeled as
independent processes that can be assigned to crowd tasks and configured via suitable
task parameters.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

http://editor.crowdcomputer.org
http://www.activiti.org
http://compiler.crowdcomputer.org
http://engine.crowdcomputer.org
http://engine.crowdcomputer.org
http://www.eclipse.org

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:27

Fig. 19. The visual BPMN4Crowd editor in action. The figure highlights the BPMN4Crowd palette with
new modeling constructs and the properties window for the setting of task parameters.

With the BPMN4Crowd editor, a crowdsourcer can easily create his own CS pro-
cesses. Figure 19 shows a screenshot of the editor. On the right-hand side of the figure,
there is the palette that contains the crowd tasks (A), data transformation tasks (B),
and CC API tasks to define the tactic (C) and define the validation process (D). The
crowd tasks (A) enable the reuse of predefined tactics (the ones presented in Section 5.3)
and custom tactics; TurkTask also allows posting tasks on Mechanical Turk. In addi-
tion, we added a machine task, different from standard BPMN, to ease the integration
of external Web services with CC. The machine task can be used to get data that are
used in the process (load data) or post data to execute external services. Each data
transformation task (B) implements a specific data operation (e.g., merge or split). The
current implementation also supports a prototypical implementation of split and merge
operations on metadata structures. For CC API tasks (C and D), we implemented a set
of dedicated tasks that wrap specific API calls. In (C), we have all tasks that can be
used to model a custom task. In (D), the modeler has the tasks that are used to call

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:28 S. Tranquillini et al.

and model a validation process. The Quality set task allows invoking the Quality.set
CC operation directly from within a validation process.

The central part the BPMN4Crowd editor features the canvas where the process
is modeled. The crowdsourcer can drag and drop tasks from the palette and compose
his own CS process. The view in Figure 19 is the process model for the logo assess-
ment example introduced in Figure 4. For each data transformation or crowd task,
the crowdsourcer can specify a set of configuration parameters in the property tab in
the lower part of the editor. The parameters are the ones already specified for crowd
tasks (Section 6.1), plus additional fields that are used to specify input and output data
objects as well as others that refer to the configuration of the tactic, such as the tactic
process and reward parameters:

(1) Description of the task: This is the text that is presented to the worker when she
starts the task. It should describe what the worker has to do to complete the task.

(2) Task duration: This parameter specifies for how long the task will be active. After
this time, the task will automatically be stopped by the system (deadline).

(3) Page URL: This is the parameter that specifies the URL of the task page created
by the crowdsourcer. The task page implements the interface of the crowd tasks.

(4) Tactic process: Since each custom crowd task has its own tactic process, here the
crowdsourcer can specify the process name of the tactic process to adopt.

(5) Tactic parameters: Here the crowdsourcer can pass configuration data from the CS
process to the tactic process.

(6) Reward: This parameter specifies the quantity of the reward to be given to workers
whose work is evaluated of sufficient quality.

(7) Reward platform: CC has a plugin interface able to support various types of pay-
ments. With this parameter, the crowdsourcer is able to decide which platform (e.g.,
PayPal) to use to reward workers.

(8) Input data name: This parameter is used to specify the name of the data object
from which to read data as input.

(9) Output data name: This parameter specifies the name of the data object to which
to write output data.

These implementation conventions assure the full expressive power of BPMN4Crowd
as introduced in this article.

7.2. BPMN4Crowd Compiler and Deployer

BPMN4Crowd contains both standard BPMN constructs and instructions for CC APIs
and task pages. This makes the language not immediately executable by a standard
BPMN engine. The compiler therefore takes as input a CS process, rewrites parts of
it, and creates a zip file that contains executable BPMN processes (the CS process and
all of its validation processes) that can be deployed on the engine.

The compiler modifies the process in five key aspects, graphically illustrated in
Figure 20, which shows the differences between compiled and noncompiled processes:
Crowd tasks, Pick tasks, Receive tasks, Validation tasks, and the end event in tactic
models. The compiler adds a receive message after each crowd task to receive a notifi-
cation of task completion from CC front-end upon termination of the respective tactic
process. A similar compilation is repeated for all validation processes linked by the
crowd tasks of the process, adding a receive task after each Validation task. For the
internals of the tactic processes, the compiler converts the Pick and Receive tasks into
message receive tasks, if these are not yet present (e.g., this is used by the tactics in
Figures 12 and 13), and adds a Task Finish task before the end event of tactic models
(a system operation that closes the tactic).

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:29

Fig. 20. The transformation of the processes before and after the compilation step.

Once the compilation is finished, the crowdsourcer can take the zip file and upload
it to the deployer that unzips the file, extracts crowd-related information, creates the
necessary data structures and metadata to handle the execution of crowd tasks, and
deploys the process on the BPMN engine. Then, the process can be executed.

7.3. Extended BPMN Engine

Upon deployment of a process, the start message of the process is sent by the deployer
to the BPMN engine to start execution. Standard BPMN constructs are processed ac-
cording to their standard semantics. To handle the execution of a crowd task on CC,
we extended the engine with additional logic (Java classes). For every crowd task,
there is a Java class that sends to the task manager API of CC the task configura-
tion parameters (specified in the process model) and runtime data objects, such as the
output of a previous task. The task manager receives the data and instantiates the
corresponding crowd task by instantiating the respective tactic process. For each new
crowd task, the task manager creates its own tactic instance and makes the task avail-
able to workers. Workers are then able to execute the task instances and send results.
Workers’ results are sent via CC API to the task manager, which updates the metadata
of the corresponding instances. Afterward, the task manager executes the validation
process. This process is again implemented as a BPMN process. After the validation,
the task manager executes the reward procedure. This is a function of the reward man-
ager, which executes the logic specified by the crowdsourcer and updates the metadata
relative to rewarding, giving the reward to the workers. Once the tactic execution is
completed, the task manager gives back the execution control to the BPMN engine,
sending the task metadata resulting from the execution as well.

Data tasks are executed in a similar fashion. We created dedicated APIs for each
operation (we do not show these in the Figure 6 because it is a mere implementation
choice). The Data API implements the operations of the functions discussed previously.
Their execution is straightforward: the APIs accept as input data, execute the selected
operation, and return the result to the BPMN engine in the form of a message that
contains the metadata results.

8. CASE STUDY

In the following, we discuss the benefits and limitations of BPMN4Crowd and the
described CC prototype if leveraged for the implementation of a concrete CS process
that we carried out at the University of Trento in the context of another research
project: crowd-based pattern mining.

8.1. Goal and Requirements

Harvesting knowledge from large datasets (i.e., data mining) is a domain where
computers generally outperform humans, especially if the dataset to be analyzed is

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:30 S. Tranquillini et al.

large. If the dataset is instead small and the knowledge to be identified is complex
(e.g., model patterns), humans may outperform machines. Starting from this obser-
vation, in Rodriguez et al. [2013, 2014], we started investigating whether it is pos-
sible to use the crowd to mine patterns from small datasets; we specifically focused
on the domain of mashup model patterns to feed our pattern recommender Baya
[Roy Chowdhury et al. 2011, 2012] implemented for the data mashup tool Yahoo!
Pipes (https://pipes.yahoo.com).

Mashups [Daniel and Matera 2014] are composite Web applications developed start-
ing from reusable data, application logic, and/or UIs sourced from the Web. Mashup
tools, such as Yahoo! Pipes, aim to ease the development of mashups, most commonly
via model-driven development paradigms that produce models that can be parsed or
compiled for execution. Models hence reflect mashup development knowledge, and
model patterns (reusable, modular model fragments) may help share and reuse such
knowledge. A typical pattern (see, e.g., Figure 22) contains a set of components (e.g.,
RSS feeds or data processing logics), connectors (propagating data among components),
selections, and configurations (e.g., data inputs). The video of how Baya works in prac-
tice (https://www.youtube.com/watch?v=AL0i4ONCUmQ) provides a good feeling of the
kind of models that we target and their benefit in the development of data mashups
(mashups processing data sourced from the Web).

The experiments carried out were designed, implemented, and coordinated manually,
although as a matter of fact, the methodology followed can be seen as a CS process
involving human actors (researchers), machine tasks (e.g., to compute metrics), and a
set of crowd tasks. In the following, we show how CC and BPMN4Crowd can be used
to implement the same experiments as a CS process.

We summarize the requirements of the study as follows:

—Crowd algorithms: We would like to compare three different “crowd algorithms”
for pattern mining—that is, three task implementations asking workers to identify
patterns with different levels of complexity and information available:
—Naive shows individual models to workers and asks them to identify pieces of

reusable knowledge—that is, patterns;
—Random3 presents three different models and asks them to identify patterns that

recur in at least two of the models; and
—ChooseN allows workers themselves to choose N models from a set of 10 given

models and asks them to identify patterns inside the N models.
—Research question 1: After running the three algorithms, we would like to compare

the respective patterns produced by computing a set of simple metrics, such as the
number of patterns produced, the average size of the patterns, and the cost per
pattern. This is done to be able to choose the “best” algorithm (if any) and set of
patterns for the next step of the study.

—Quality assessment: Data mining commonly requires an expert to validate discovered
knowledge. In the context of mashup model pattern, we are especially interested in
studying the understandability, usefulness, reusability, and novelty of patterns, and
we would like to study whether this validation can be crowdsourced as well by
implementing two different validation “algorithms” to be compared:
—Expert assessment is done manually by ourselves (experts in the field). This as-

sessment serves as ground truth for the comparison.
—Crowd assessment is done by the workers and represents the object of the study.

The task is the same as the one for the experts.
—Research question 2: Given the two assessments, we would like to take a decision on

the applicability of CS for the validation of mined model patterns.

The CS logics of the two dependent studies can be abstracted as a configurable
process:

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

https://pipes.yahoo.com
https://www.youtube.com/watch?v$=$AL0i4ONCUmQ

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:31

Fig. 21. The CS process of the crowd-based pattern mining scenario. All except one crowd task use a
marketplace tactic; the Expert Assessment task uses a mailing list tactic for predefined experts. In line with
our prototype implementation, we omit the Data Merge task after the crowd tasks.

(1) Load mashup models and initialize dataset: To ease the work of the crowd, we use
screenshots of the models as rendered in Yahoo! Pipes as the dataset.

(2) Partition dataset and map to tasks: The three mining tasks require 1, 3, and 10
models as input per task instance; the validation tasks requires a third of the
dataset per expert (three researchers are involved) and 1 model per crowd task
instance.

(3) Deploy tasks: The tasks must be deployed on CC and made available to the crowd
and experts.

(4) Manage task execution and collect patterns: Tasks must be executed by the crowd
and experts, and patterns must be collected by CC.

(5) Integrate results: Results from workers must be integrated into an output dataset,
possibly filtering out results of workers with poor performance (based on control
questions).

For presentation purposes, we keep the requirements and descriptions here simple;
the complete details can be inspected in the references cited in this section. For instance,
we omit the details of the control questions used to assess the performance of workers
or the input fields added to the tasks to collect additional metadata.

8.2. Process Model

Figure 21 illustrates a possible BPMN4Crowd process model implementing the whole
study in an integrated fashion. The process starts with loading the screenshots of
the models (also called pipes in Yahoo! Pipes) from a prefilled repository. Then, the
process proceeds with three parallel branches, one for each crowd mining approach to
study. The Naive branch splits the dataset into subsets of size 1 using the SplitWith(n)
operator; the Random3 and ChooseN branches do the same with subset sizes of 3 and
10. Next, the actual mining is crowdsourced via three marketplace crowd tasks, each
followed by a Filter operator dropping patterns that have fewer than two components
selected, are not connected, and do not have all input fields filled. Then, all collected
patterns are used by a researcher to compute a set of metrics (number of patterns,
average pattern size, cost per pattern) that, in turn, are used by a researcher to choose
the algorithm with the best performance.

Starting from the set of patterns of the chosen algorithm, the process proceeds with
the study of whether the crowd can be used to validate patterns. It splits the patterns
into three equal subsets to be validated by the three experts and subsets of size 1 for
the workers. The process models the involvement of the experts as a crowd task, in
that it uses a mailing list tactic to assign the tasks to them. The crowd assessment is

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:32 S. Tranquillini et al.

Fig. 22. Task design for the selection, description, and rating of mashup model patterns.

instead again performed using a marketplace tactic. The process ends with a researcher
comparing the results manually and making a final decision on the research questions.

8.3. Implementation

Figures 22 and 23 are screenshots of the task pages implemented to crowdsource the
Naive pattern identification task and the pattern validation tasks (for both experts
and the crowd), respectively; the screenshots of the Random3 and ChooseN tasks can
be found in Rodriguez et al. [2013].

Given these task implementations, the modeling of the process in Figure 21 inside
the BPMN4Crowd editor is straightforward. We replicated the logic within the editor,
configuring each task according to the conventions explained in the previous section.
The resulting process model is shown in Figure 24, in which, for better readability,
we graphically annotate tasks with the parameters that must be specified as task
properties in the editor. To model the process, we decided to use the crowd task with
predefined tactics. The figure shows that the implemented editor and runtime environ-
ment support all necessary features described previously in this article.

Figure 19 shows the editor with the first part of the process in the modeling canvas
along with the details of the parameter settings for the Naive crowd task. Specifically,
the Naive crowd task uses the marketplace tactic illustrated in Figure 11 with an
evaluation of the results based on gold data, as presented in Figure 15(c). The reward
of the task is $0.50 upon successful validation. The description of the task tells the goal
and rules of the task. The deadline is set to 1 month. The page URL, the interface of the
task, points to the page shown in Figure 22. The input data object is set to “Individual
pipes,” and the output data object is set to “Patterns N.” The other crowd tasks are
configured similarly. The figure also annotates data transformation tasks with their
configurations. For example, in the first branch, the Split task is configured to divide
the set of models into sets of one element each.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:33

Fig. 23. Task design for the validation of collected mashup model patterns. We omit the initial description,
gold questions for worker assessment, and additional inputs.

All crowd tasks are implemented with standard Web technologies (HTML, CSS,
JavaScript, and Java on the server side) and deployed on a Web server hosted by
Amazon Web Services. Mashup models are identified (the metadata exchanged between
the task pages and CC) using the filenames of the models as stored on the Web server.
The human and machine tasks are standard BPMN constructs (assigned to ourselves
and an initial pattern loading Web service) and, as such, are managed directly by the
Activiti BPMN engine, which can be deployed on a common Web server. Activiti natively
exposes a set of APIs that CC can use to deploy, execute, and control the process.

8.4. Analysis

The outlined implementation shows how BPMN4Crowd eases both the design and
the conduct of the described study. For the actual study described in Rodriguez et al.
[2013], we did not yet have CC and BPMN4Crowd and therefore had to implement
everything from scratch and by hand (so far, we only studied the first part of the
algorithm, i.e., the comparison of the three pattern mining tasks). For instance, we
developed three separate Web applications, one for each pattern mining task, each

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:34 S. Tranquillini et al.

Fig. 24. Implementation and configuration of the CS process of Figure 21 in the BPMN4Crowd editor.
Annotations correspond to task configurations and make them explicit in the model.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:35

comprising its own data store, data management logic, task UI, data task instance
assignment logic, and pattern validation logic. Figure 22 is the screenshot of the origi-
nal task page used. We manually configured the database underlying the applications
and implemented the logic to load the pipes dataset both in JSON (for all pipes ex-
tracted from the “most popular pipes” category) and PNG (for the sample used to
crowdsource the task). We implemented the algorithms (one for each application) to
split the dataset as needed and manually mapped each partition to a task instance.
We manually created as many task instances as we had data partitions, so as to have
a task instance, thus a worker, for each partition. As a concrete CS platform, we used
CrowdFlower (www.crowdflower.com), which features a marketplace tactic with gold
data for worker assessment. For each crowd task, we created a task on CrowdFlower
that contained the questionnaire with the gold questions to evaluate workers’ exper-
tise, plus a link to our Web applications (the task pages) where workers could perform
the pattern identification tasks. Gold data were used as discriminant to accept or reject
results, filter out bad results, and reward workers. The filtering was done manually:
data were downloaded from CrowdFlower and from our Web applications and were
matched and filtered according to the criteria outlined previously. In the same filtering
operation, we also checked if the patterns met the requirements of what we called
good patterns (minimum two components, connected model, meaningful text inputs),
eliminating the ones that did not. The three CS experiments were run sequentially,
first Naive, then Random3, then ChooseN. When all three experiments were com-
pleted and all data were integrated (manually), we compared the results and decided
which was the best approach to mine model patterns with the crowd. For curiosity, it
turned out that the Naive approach produced the most patterns, with good variabil-
ity in terms of pattern sizes and at the lowest overall cost (after applying all checks)
[Rodriguez et al. 2013]. In Rodriguez et al. [2014], we further compared the perfor-
mance of Naive against that of an automated mining algorithm, obtaining similar
results.

The BPMN4Crowd process model in Figure 24 shows well how much of the described
manual effort can instead be automated with CC. The two approaches are both effective
but require a significantly different amount of time for their development. Of course,
the implementations of the individual task pages must still be done manually by the
crowdsourcer. However, the respective Web applications no longer need to take care of
managing task instances and data task instance assignments, as this is now done by
CC. What is needed instead is the exchange of the respective metadata with CC, which
is a minor effort compared to the full implementation of the data management and
task instantiation logics. Given the previous implementation of these task pages, their
reuse in CC is straightforward. The Load Data task that fetches the pipes models from
the local repository can be implemented as a common Web service.

Given these implementations, the use of CC and BPMN4Crowd allows one to auto-
mate the management and execution of 14 tasks out of the 17 tasks in Figure 24 (next to
the control flow and propagation of data): the machine task to load data is executed au-
tomatically by calling the respective Web service; the eight data transformation tasks
are done inside CC, and the five crowd tasks (including the expert assessment task) are
deployed, executed, and integrated automatically. What is left as pure manual work
are the three human tasks, which require the direct involvement of the researchers
(in addition to the involvement into the expert evaluation, which is part of the study
design and not attributable to the coordination of the study). In addition, the avail-
ability of the model of the process and the possibility to easily change parameters of
tasks or to reconfigure the model enables researchers to fine-tune the process and rerun
experiments without spending additional time for coding or coordinating tasks.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

file:www.crowdflower.com

7:36 S. Tranquillini et al.

Fig. 25. Comparison of the development support provided by different CS platforms.

9. COMPARATIVE ANALYSIS AND LIMITATIONS

The target users of BPMN4Crowd are process modelers who want to crowdsource work
in a fashion that is integrated with their BPM practices. Today, BPM typically involves
the design and execution of process models expressed in BPMN. The possibility to
intermix tasks executed by a crowd with tasks executed by other actors, such as the
crowdsourcer herself or a Web service, by means of an extension of BPMN makes the
creation of integrated and structured CS processes feasible. Compared to state-of-the-
art CS platforms, the binomial CC/BPMN4Crowd provides for this integration in a
natural fashion. We thus consider the approach described in this article particularly
effective and powerful in cases where the outlined kind of integration is needed.

In this respect, it is important to realize that advanced CS scenarios generally are not
trivial and require good domain knowledge by the process modeler, as well as working
knowledge of CS. CC and BPMN4Crowd both enable new features (e.g., tactics) and
simplify their use (e.g., via suitable abstractions and repositories of reusable models);
however, the intrinsic, conceptual complexity of advanced CS processes cannot be elim-
inated. This is true also for other CS approaches that target similar composite CS
processes.

In Figure 25, we compare CC and BPMN4Crowd with a basic marketplace CS plat-
form (Mechanical Turk) and three other platforms for the management of complex
CS processes (TurKit, CrowdForge, and CrowdSearcher—see the next section for de-
tailed descriptions). The requirement for the selection of these platforms is either their
free accessibility online (Mechanical Turk, CrowdSearcher) or the availability of their
source code (TurKit, CrowdForge). The comparison is based on a selection of features
that impact the complexity of developing CS processes; we group the features into task
support, control flow support, data management support, and development support
features. The more the features are supported by a platform, the more the platform

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:37

eases the development of processes that require these features and the less manual
effort is needed.

CC is the only platform that supports human tasks—that is, integration with con-
ventional BPM practice—whereas CrowdSearcher comes with support for tasks per-
formed on social networks (Facebook). CC is the only platform that supports custom
CS tactics, and thanks to the use of BPMN, it supports all control flow constructs.
It also supports custom validation logics, whereas other approaches typically support
predefined validation logics, if any. One distinguishing feature is that CC manages
metadata, not actual data, and the crowdsourcer decides where to store the data on his
own. This choice reduces the amount of data transferred over the network and allows
the crowdsourcer to protect data that are sensitive (e.g., images with nudity) or subject
to local regulations (e.g., healthcare data of citizens in some countries must be stored
on country-local servers).

The previous comparison shows that for simple or individual crowd tasks not requir-
ing custom logics or having special data management requirements, CC can be used
but may result in more complexity than necessary. To crowdsource a single crowd task,
a conventional CS platform (e.g., Mechanical Turk) may be easier to use and manage.
To crowdsource a crowd task that is of pure data processing nature, a dedicated in-
strument like CrowdForge or CrowdDB [Franklin et al. 2011] may be more efficient.
However, if the crowd task is to be integrated with existing legacy business processes,
CC may again be more efficient.

The choice of extending an existing process modeling language and related technolo-
gies has a threefold benefit (next to the native support for the control flow features):
(1) it can foster the adoption of BPMN4Crowd, as BPMN is widely known and adopted
to model business processes; (2) people who already use BPMN can easily integrate and
extend their processes with tasks executed by the crowd; and (3) the implementation of
the necessary runtime environment can rely on existing, robust infrastructure services
(e.g., the BPMN engine). People not yet familiar with business process modeling will
first have to become acquainted with that, then BPMN4Crowd requires learning only
a few additional constructs for CS; the resulting complexity is only slightly larger than
that of pure BPMN.

Of course, the choice of BPMN as a starting point for the modeling of CS processes also
comes with a cost: the need to stick to the abstractions and conventions of the language.
This implies that not all development aspects are represented graphically and instead
may require the joint use of modeling constructs and configuration parameters. This
is, for instance, the case of our crowd tasks that come with a set of parameters to
configure the URL of the task page, the validation process to be used, and so forth.
Considering that this is common practice in BPMN, we are confident that the benefits
and abstractions of the language outweigh this apparent limitation.

With CC, we propose a new type of CS platform that comes more in the form of a
library of basic CS APIs and less as a self-sufficient platform. Only the implementation
of suitable CS tactics brings CC to life. However, the current shortcoming of CC is that
it does not yet have its own crowd—of course, this is because it is a research prototype
more than a commercial tool. This limits the possibility to test the execution of CS
processes with real workers. To overcome this problem and enable the crowdsourcer
to be immediately productive, we started integrating CC with existing platforms, such
as Amazon Mechanical Turk, and enable posting tasks on external platforms. The
prototype implementation shown in Figure 19, for instance, features a TurkTask task
type. Although this provides access to an existing crowd, it also introduces a limitation:
it is not possible to implement one’s own tactics for this kind of task, as they are hard
coded inside the target platforms.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:38 S. Tranquillini et al.

Regarding the implementation of crowd tasks, our choice is to ask the crowdsourcer
to create his own UIs for tasks via separate Web pages that can be included in the
CC front-end. On the one hand, this gives the crowdsourcer the freedom to create and
fine-tune UIs that best suit the tasks to be crowdsourced (this is a crucial aspect for
the success with CS) and full control over the published and collected data. On the
other hand, this requires some programming effort to create the task pages and set up
the exchange of metadata between the pages and CC. This may hinder the adoption
of CC by less-skilled crowdsourcers. To support this kind of crowdsourcer, we aim to
develop a dedicated, hosted tool that helps crowdsourcers create task UIs and provides
a set of ready-to-use page templates that can easily be configured and reused inside
CS processes.

Finally, the focus of this work specifically has been on CS processes—that is, on
the control flow perspective of advanced CS scenarios and less on declarative aspects
such as advanced worker selection policies. The current implementation provides for
worker selection based on workers’ profile properties. However, it is not yet able to
express more complex constraints, such as the four eyes principle (“the performer of
one task cannot participate in a validation task of its own work”). Enforcing this kind
of constraint requires maintaining not only worker profile information but also the
history of the task instances and the specific data items on which they have worked.
The metadata model implemented by CC already accommodates this kind of tracking,
and the necessary API support still needs to be implemented.

10. RELATED WORK

The work presented in this article proposes a language and a platform to create and
enact CS processes that are composed of crowd, data, machine, and human tasks. In
the literature, similar solutions have been proposed, interpreting the same problem
along three different lines of thought: procedural programming, parallel computing,
and process modeling.

10.1. Procedural Programming Approaches

The procedural programming approaches mostly extend existing programming lan-
guages or define new languages able to cover CS aspects. For instance, TurKit [Little
et al. 2010a] is a programming language based on JavaScript that adds support for
human computation. TurKit uses Amazon Mechanical Turk as a platform to execute
human tasks. Programmers can write software applications that use both human and
machine computations. AutoMan [Barowy et al. 2012] is another system for human
computation that integrates crowd tasks into Scala.

These works abstract CS logic at a programming language level. Programming lan-
guages allow crowdsourcers to create flexible CS logics, yet they neglect support for
tactic definitions and configurations. As we showed in our case study, implementing a
CS process generally is not an easy task, even with help from dedicated frameworks.
Crowdsourcers who rely on programming languages are forced to code all aspects of
their CS process—a task that is not trivial and makes it harder to maintain and evolve
processes. In addition, the use of procedural programming is limited to programmers
and is out of the reach of those without the necessary software development skills.

10.2. Parallel Computing Approaches

The parallel computing approaches interpret a crowd task as a complex process that
can be decomposed into a set of smaller and simpler tasks that can be executed in
parallel. CrowdForge [Kittur et al. 2011] and Turkomatic [Kulkarni et al. 2012] adapt,
for example, the MapReduce approach [Dean and Ghemawat 2008] to crowdsource
complex work. Both frameworks model tasks as a set of split and recombine tasks

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:39

executed by workers. Workers have the possibility to solve a task or split it in smaller
tasks (subtasks), in which case the workers are in charge of recombining the solutions
of the subtasks into a unique solution. Jabberwocky [Ahmad et al. 2011] implements
a similar MapReduce approach. Jabberwocky is composed of three different pieces:
Dormouse provides operations to interact with machines and humans; ManReduce,
similar to CrowdForge and Turkomatic, implements the MapReduce algorithm using
Dormouse as workers; and Dog, a scripting language that can be used to specify the
details of applications (e.g., defining users or task goals).

The works of this type give one the possibility to bring human and machine computa-
tions together into a single application. Compared to our approach, these systems focus
on CS processes composed of parallel executions of tasks, which can be implemented as
well with BPMN4Crowd, but they neglect support for more complex, generic process
logics. Most of the discussed approaches require some level of scripting expertise, which
is an abstraction that may not be suitable for crowdsourcers who are business analysts
or those who are not programming experts.

10.3. Process Modeling Approaches

The process modeling approaches are most similar to the interpretation that we follow
in this article. CrowdWeaver [Kittur et al. 2012], for instance, is a process modeling tool
built on top of CrowdFlower. The CrowdWeaver system offers a visual tool with a graph-
ical modeling notation to create and execute data-driven processes bringing together
machine and crowd tasks, the former providing data transformation capabilities. The
system abstracts the native operations and logic of CrowdFlower; it does not support
crowd tactics, other CS platforms, or the integration with legacy business processes.
CrowdLang [Minder and Bernstein 2011, 2012] is a model-driven language for the
modeling of generic human computations. Similarly to BPMN4Crowd, it allows one to
express data and control flows and describe application logics as tasks executed by the
crowd or machines. CrowdLang also supports operations for the management of data.
Its modeling notation features workflow modeling constructs such as rounded rectan-
gles for tasks and diamonds for conditions, but it also introduces additional constructs,
such as the decision, which is modeled with a circle shape. More importantly, each task
instance in CrowdLang must be modeled as an individual task, and thus crowdsourcers
must create a task in the model for each task instance they need. This may result in
a huge number of similar tasks and is not very efficient from a modeling perspective.
Bozzon et al. [2014] propose methods and tools for designing crowd-based workflows
as interacting tasks and additionally propose a set of typical workflow patterns that
help crowdsourcers implement their CS processes (BPMN4Crowd is also powerful in
expressing reusable logics and patterns). The proposed modeling language is accom-
panied by a runtime environment called CrowdSearcher that supports deploying tasks
on both CS platforms and social networks and monitoring CS processes at runtime.
The environment also provides explicit support for data storage and processing.

The three approaches are suitable for modeling CS processes. However, they do not
provide crowdsourcers with the flexibility to also define their own tactics. In addition,
they all feature a proprietary modeling notation that may not be straightforward to
crowdsourcers. We instead extend BPMN and support the integration with most of
the state-of-the-art BPM tools, which makes modeling more accessible to people who
already know BPMN and integration into legacy processes easier.

Many researchers [Curran et al. 2009; Vukovic 2009; La Vecchia and Cisternino
2010; Kittur et al. 2013] have highlighted the benefits of the integration of systems
that manage human- and machine-based work with BPM or workflow management
in CS. This integration can be achieved in various ways, next to the one that we
describe in this article. For example, Khazankin et al. [2012] present an approach

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

7:40 S. Tranquillini et al.

to an adaptable execution of business processes on top of a CS platform. Its main
peculiarity is the ability to determine optimal task publishing procedures, adapting
them to modeled process deadlines and minimizing the reward cost. The approach
optimizes process execution, which is a feature that CC could integrate in the future
and from which it could benefit. Skopik et al. [2011] use Human-Provided Services
(HPS) [Schall et al. 2008], which abstract human capabilities as Web services, easing
the interaction with people and the integration with SOA systems. The supported
processes use crowd tasks that are executed by people taken from a social network.
Schall et al. [2012] extend BPEL4People [Active Endpoints, Adobe, BEA, IBM, Oracle,
SAP 2007], an extension of the Web service orchestration language BPEL [Jordan and
Evdemon 2007], with parameters to specify requirements specific to CS, such as user
skills and deadlines. Both approaches tackle the problem of CS by abstracting worker
capabilities as configurations of tasks or services.

In a more general context, human computation—that is, the use of human capa-
bilities to solve problems—recently has been investigated and adopted as a way to
solve tasks that machines cannot solve. CS as proposed by Howe [2008] is one possi-
ble example of human computation. Another example of human computation is social
computing, which studies and leverages on social human behaviors facilitated by com-
puters (examples are blogs and wikis) [Quinn and Bederson 2011]. This line of thought
has inspired a practice called social BPM, which is a recent trend in research that
fuses social interactions as enabled by social software and BPM [Johannesson et al.
2009; Erol et al. 2010]. BPM is a multifaceted domain, and social capabilities have
been used, for instance, to improve the design of processes [Koschmider et al. 2010]
or enable the coordination and collaboration of multiple actors during process execu-
tion [Dengler et al. 2011]. Then there are social BPM approaches that extend business
process languages, similar to our approach, but leverage on the capabilities of people
acting in generic social networks rather than in dedicated CS platforms. BPM4People
[Brambilla et al. 2011, 2012] proposes, for instance, a set of extensions of BPMN that
enable the modeling and deployment of process-aware, social interactions over social
networks, such as the collection of votes or comments. BPM4People supports a social
computing paradigm in which work is mostly executed implicitly, and actors may not be
aware that they are taking part in a task or work. Instead, our focus is on CS platforms,
where tasks are defined explicitly and possibly rewarded and where actors participate
consciously either to offer or to execute work.

11. CONCLUSION

This article advances the state of the art on CS along three core directions. First, it
establishes CS processes as processes that involve individual actors, machines, and
workers as first-class development concern, going beyond the conventional focus on
crowd tasks only. Second, it proposes an alternative interpretation of the CS platform—
CC—that comes as a set of CS-specific APIs and allows the crowdsourcer to implement
custom CS tactics for the CS of individual tasks. Third, it fosters the integration of CS
capabilities with state-of-the-art BPM practices and legacy systems. CS processes allow
the crowdsourcer to specify advanced CS and process logics at a level of abstraction that
has proven to be suitable for the specification and coordination of tasks (i.e., business
processes). CS tactics provide the crowdsourcer with unprecedented control over how
work is advertised, assigned, executed, integrated, evaluated, and rewarded. The use
of off-the-shelf BPM technology finally makes the two CS instruments available as a
service that can be integrated flexibly into existing software.

The tangible contributions of the article are (1) a prototype implementation of
CC available as open-source software, (2) an extension of BPMN—BPMN4Crowd—
specifically tailored to the needs of CS, (3) a set of reusable tactic process models,

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:41

(4) a set of reusable validation process models, (5) a visual editor for the modeling of
BPMN4Crowd processes, and (6) a case study that discusses the benefits and short-
comings of the approach as a whole in the context of a concrete human computation
scenario.

In future work, we plan to provide an online repository where crowdsourcers can
search for, retrieve, and share tactics, validation processes, and CS processes to foster
knowledge reuse and exchange. Similarly, we are considering the implementation of
a hosted instrument for the visual design of crowd task pages, starting from a set of
predefined templates for recurrent task types, such as questionnaires, comparisons,
voting tasks, and text translations. We also intend to use CC and BPMN4Crowd our-
selves for the design of other CS experiments, such as the case study described in this
article.

ACKNOWLEDGMENTS

We are grateful to Carlos Rodrı́guez (University of Trento) for the fruitful feedback and for providing insight
into the case study on mining mashup model patterns from Yahoo! Pipes.

REFERENCES

Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. 2007. WS-BPEL Extension for People (BPEL4People)
Version 1.0. Technical Report.

Salman Ahmad, Alexis Battle, Zahan Malkani, and Sepander Kamvar. 2011. The Jabberwocky programming
environment for structured social computing. In Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology (UIST’11). 53–64.

Mohammad Allahbakhsh, Boualem Benatallah, Aleksandar Ignjatovic, Hamid Reza Motahari-Nezhad, Elisa
Bertino, and Schahram Dustdar. 2013. Quality control in crowdsourcing systems: Issues and directions.
IEEE Internet Computing 17, 2, 76–81.

Daniel W. Barowy, Charlie Curtsinger, Emery D. Berger, and Andrew McGregor. 2012. AutoMan: A platform
for integrating human-based and digital computation. ACM SIGPLAN Notices 47, 10, 639–654.

Christian Baun, Marcel Kunze, Jens Nimis, and Stefan Tai. 2011. Cloud Computing: Web-Based Dynamic
IT Services. Springer.

Alessandro Bozzon, Marco Brambilla, Stefano Ceri, Andrea Mauri, and Riccardo Volonterio. 2014. Pattern-
based specification of crowdsourcing applications. In Web Engineering. Lecture Notes in Computer
Science, Vol. 8541. Springer, 218–235.

Marco Brambilla, Piero Fraternali, and Carmen Vaca. 2011. A notation for supporting social business process
modeling. In Business Process Model and Notation. Lecture Notes in Business Information Processing,
Vol. 95. Springer, 88–102.

Marco Brambilla, Piero Fraternali, and Carmen Karina Vaca Ruiz. 2012. Combining social Web and BPM
for improving enterprise performances: The BPM4People approach to social BPM. In Proceedings of the
21st International Conference Companion on World Wide Web (WWW’12 Companion). 223–226.

Ruggiero Cavallo and Shaili Jain. 2012. Efficient crowdsourcing contests. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems—Volume 2 (AAMAS’12). 677–686.

Crowdsourcing Week. 2014. The 2014 Global Crowdsourcing Pulsecheck: 1st Annual Survey Topline
Results. Retrieved April 19, 2015, from http://www.slideshare.net/crowdsourcingweek/2014-global-
crowdsourcing-pulsecheck-1st-annual-survey-topline-results.

Stephan Curran, Kevin Feeney, Reinhard Schaler, and David Lewis. 2009. The management of crowdsourcing
in business processes. In Proceedings of the IFIP/IEEE International Symposium on Integrated Network
Management-Workshops, 2009. 77–78.

Florian Daniel and Maristella Matera. 2014. Mashups: Concepts, Models and Architectures. Springer.
Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Com-

munications of the ACM 51, 1, 107–113.
Frank Dengler, Agnes Koschmider, Andreas Oberweis, and Huayu Zhang. 2011. Social software for coor-

dination of collaborative process activities. In Proceedings of the 3rd Workshop on Business Process
Management and Social Software. 396–407.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

http://www.slideshare.net/crowdsourcingweek/2014-global-crowdsourcing-p ulsecheck-1st-annual-survey-topline-results
http://www.slideshare.net/crowdsourcingweek/2014-global-crowdsourcing-p ulsecheck-1st-annual-survey-topline-results

7:42 S. Tranquillini et al.

Steven Dow, Anand Kulkarni, Scott Klemmer, and Björn Hartmann. 2012. Shepherding the crowd yields
better work. In Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work
(CSCW’12). 1013–1022.

Selim Erol, Michael Granitzer, Simone Happ, Sami Jantunen, Ben Jennings, Paul Johannesson, Agnes
Koschmider, Selmin Nurcan, Davide Rossi, and Rainer Schmidt. 2010. Combining BPM and social soft-
ware: Contradiction or chance? Journal of Software Maintenance and Evolution: Research and Practice
22, 67, 449–476.

Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold Xin. 2011. CrowdDB: An-
swering queries with crowdsourcing. In Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data. 61–72.

Matthias Hirth, Tobias Hoßfeld, and Phuoc Tran-Gia. 2013. Analyzing costs and accuracy of validation
mechanisms for crowdsourcing platforms. Mathematical and Computer Modelling 57, 11–12, 2918–
2932.

Tobias Hoßfeld, Matthias Hirth, Pavel Korshunov, Philippe Hanhart, Bruno Gardlo, Christian Keimel, and
Christian Timmerer. 2014a. Survey of Web-based crowdsourcing frameworks for subjective quality as-
sessment. In Proceedings of the 2014 IEEE 16th International Workshop on Multimedia Signal Process-
ing (MMSP’14). 1–6.

Tobias Hoßfeld, Matthias Hirth, and Phuoc Tran-Gia. 2011. Modeling of crowdsourcing platforms and gran-
ularity of work organization in Future Internet. In Proceedings of the 2011 23rd International Teletraffic
Congress (ITC’11). 142–149.

Tobias Hoßfeld, Christian Keimel, Matthias Hirth, Bruno Gardlo, Julian Habigt, Klaus Diepold, and Phuoc
Tran-Gia. 2014b. Best practices for QoE crowdtesting: QoE assessment with crowdsourcing. IEEE Trans-
actions on Multimedia 16, 2, 541–558.

Jeff Howe. 2008. Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business. Crown
Publishing Group, New York, NY.

Panagiotis G. Ipeirotis. 2010. Analyzing the Amazon Mechanical Turk marketplace. XRDS: Crossroads, the
ACM Magazine for Students 17, 2, 16–21.

Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. 2010. Quality management on Amazon Mechanical
Turk. In Proceedings of the ACM SIGKDD Workshop on Human Computation (HCOMP’10). ACM, New
York, NY, 64–67.

Paul Johannesson, Birger Andersson, and Petia Wohed. 2009. Business process management with social
software systems—a new paradigm for work organisation. In Business Process Management Workshops.
Lecture Notes in Business Information Processing. Springer, 659–665.

Diane Jordan and John Evdemon. 2007. Web Services Business Process Execution Language Version 2.0.
OASIS. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

Roman Khazankin, Benjamin Satzger, and Schahram Dustdar. 2012. Optimized execution of business pro-
cesses on crowdsourcing platforms. In Proceedings of the 2012 8th International Conference on Collabo-
rative Computing: Networking, Applications, and Worksharing (CollaborateCom’12). 443–451.

Aniket Kittur, Susheel Khamkar, Paul André, and Robert Kraut. 2012. Crowdweaver: Visually managing
complex crowd work. In Proceedings of the ACM 2012 Conference on Computer Supported Cooperative
Work (CSCW’12). ACM, New York, NY, 1033–1036.

Aniket Kittur, Jeffrey V. Nickerson, Michael Bernstein, Elizabeth Gerber, Aaron Shaw, John Zimmerman,
Matt Lease, and John Horton. 2013. The future of crowd work. In Proceedings of the 2013 Conference on
Computer Supported Cooperative Work (CSCW’13). ACM, New York, NY, 1301–1318.

Aniket Kittur, Boris Smus, Susheel Khamkar, and Robert E. Kraut. 2011. CrowdForge: Crowdsourcing
complex work. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology (UIST’11). 43–52.

Agnes Koschmider, Minseok Song, and Hajo A. Reijers. 2010. Social software for business process modeling.
Journal of Information Technology 25, 3, 308–322.

Pavel Kucherbaev, Stefano Tranquillini, Florian Daniel, Fabio Casati, Maurizio Marchese, Marco Bram-
billa, and Piero Fraternali. 2013. Business processes for the Crowd Computer. In Business Process
Management Workshops. Lecture Notes in Business Information Processing, Vol. 132. Springer, 256–
267.

Anand Kulkarni, Matthew Can, and Björn Hartmann. 2012. Collaboratively crowdsourcing workflows with
turkomatic. In Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work
(CSCW’12). ACM, New York, NY, 1003–1012.

Gioacchino La Vecchia and Antonio Cisternino. 2010. Collaborative workforce, business process crowdsourc-
ing as an alternative of BPO. In Proceedings of the 10th International Conference on Current Trends in
Web Engineering (ICWE’10). 425–430.

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Modeling, Enacting, and Integrating Custom Crowdsourcing Processes 7:43

Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. 2010a. Exploring iterative and parallel
human computation processes. In Proceedings of the ACM SIGKDD Workshop on Human Computation
(HCOMP’10). ACM, New York, NY, 68–76.

Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. 2010b. TurKit: Human computation
algorithms on Mechanical Turk. In Proceedings of the 23rd Annual ACM Symposium on User Interface
Software and Technology (UIST’10). ACM, New York, NY, 57–66.

Massolution. 2013. The Crowd in the Cloud: Exploring the Future of Outsourcing. White Paper. Massolution.
Patrick Minder and Abraham Bernstein. 2011. CrowdLang—first steps towards programmable human com-

puters for general computation. In Proceedings of the Workshops at the 25th AAAI Conference on Artificial
Intelligence.

Patrick Minder and Abraham Bernstein. 2012. CrowdLang: A programming language for the systematic
exploration of human computation systems. In Social Informatics. Lecture Notes in Computer Science,
Vol. 7710. Springer, 124–137.

David Oleson, Alexander Sorokin, Greg P. Laughlin, Vaughn Hester, John Le, and Lukas Biewald. 2011.
Programmatic gold: Targeted and scalable quality assurance in crowdsourcing. In Proceedings of the
Workshops at the 25th AAAI Conference on Artificial Intelligence.

Object Management Group. 2011. Business Process Model and Notation (BPMN) Version 2.0. Available at
http://www.omg.org.

Alexander J. Quinn and Benjamin B. Bederson. 2011. Human computation: A survey and taxonomy of
a growing field. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI’11). ACM, New York, NY, 1403–1412.

Carlos Rodriguez, Florian Daniel, and Fabio Casati. 2014. Crowd-based mining of reusable process model
patterns. In Business Process Management. Lecture Notes in Computer Science, Vol. 8659. Springer,
51–66.

Carlos Rodriguez, Eros Zaupa, Florian Daniel, and Fabio Casati. 2013. Crowd-Based Pattern Mining: On the
Crowdsourcing of Reusable Knowledge Identification from Mashup Models. UNITN.

Soudip Roy Chowdhury, Florian Daniel, and Fabio Casati. 2011. Efficient, interactive recommendation of
mashup composition knowledge. In Proceedings of the 9th International Conference on Service Oriented
Computing (ICSOC’11). 374–388.

Soudip Roy Chowdhury, Carlos Rodrı́guez, Florian Daniel, and Fabio Casati. 2012. Baya: Assisted mashup
development as a service. In Proceedings of the 21st International Conference Companion on World Wide
Web (WWW’12). ACM, New York, NY, 409–412.

Benjamin Satzger, Harald Psaier, Daniel Schall, and Schahram Dustdar. 2013. Auction-based crowdsourcing
supporting skill management. Information Systems 38, 4, 547–560.

Daniel Schall, Benjamin Satzger, and Harald Psaier. 2012. Crowdsourcing tasks to social networks in
BPEL4People. World Wide Web 17, 1, 1–32.

Daniel Schall, Hong-Linh Truong, and Schahram Dustdar. 2008. Unifying human and software services in
web-scale collaborations. IEEE Internet Computing 12, 3, 62–68.

Florian Skopik, Daniel Schall, Harald Psaier, Martin Treiber, and Schahram Dustdar. 2011. Towards social
crowd environments using service-oriented architectures. Information Technology 53, 3, 108–116.

Mohammad Soleymani and Martha Larson. 2010. Crowdsourcing for affective annotation of video: Devel-
opment of a viewer-reported boredom corpus. In Proceedings of the ACM SIGIR 2010 Workshop on
Crowdsourcing for Search Evaluation (CSE’10). 4–8.

Maja Vukovic. 2009. Crowdsourcing for enterprises. In Proceedings of the 2009 World Conference on Services.
686–692.

Mathias Weske. 2007. Business Process Management: Concepts, Languages, Architectures. Springer.

Received July 2014; revised December 2014; accepted March 2015

ACM Transactions on the Web, Vol. 9, No. 2, Article 7, Publication date: May 2015.

http://www.omg.org.

