

Orchestrated User Interface Mashups Using
W3C Widgets

Scott Wilson1, Florian Daniel2, Uwe Jugel3 and Stefano Soi2
1 University of Bolton, United Kingdom

scott.bradley.wilson@gmail.com
2 University of Trento, Povo (TN), Italy
{daniel,soi}@disi.unitn.it

3 SAP AG, SAP Research Dresden, Germany
uwe.jugel@sap.com

Abstract. One of the key innovations introduced by web mashups into the
integration landscape (basically focusing on data and application integration) is
integration at the UI layer. Yet, despite several years of mashup research, no
commonly agreed on component technology for UIs has emerged so far. We
believe W3C’s widgets are a good starting point for componentizing UIs and a
good candidate for reaching such an agreement. Recognizing, however, their
shortcomings in terms of inter-widget communication – a crucial ingredient in
the development of interactive mashups – in this paper we (i) first discuss the
nature of UI mashups and then (ii) propose an extension of the widget model
that aims at supporting a variety of inter-widget communication patterns.

Keywords. UI Mashups, W3C widgets, Inter-widget communication

1 Introduction

If we analyze the state of the art in mashups today, we recognize that basically two
different approaches have reached the necessary critical mass to survive: data
mashups and UI (user interface) mashups. Data mashups particularly focus on the
integration and processing of data sources from the Web, e.g., in the form of RSS or
Atom feeds, XML files, or other simple data formats; mashup platforms like Yahoo!
Pipes (http://pipes.yahoo.com/pipes/), JackBe Presto (http://www.jackbe.com/), or
IBM’s Damia [1] are examples of online tools that aim at facilitating data mashup
development. UI mashups, instead, rather focus on the integration of pieces of user
interfaces sourced from the Web, e.g., in the form of Ajax APIs or HTML markup
scrapped from other web sites; Intel Mash Maker [2] or mashArt [3] both support the
integration of UI components, but most of the times these mashups are still coded by
hand (e.g., essentially all of the mashups on programmableweb.com are of this type).

The mashup platforms focusing on data mashups typically come with very similar
features in terms of supported data sources, operators, filters, and the like. RSS,
Atom, or CSV are well-known and commonly accepted data formats, and there are
not many different ways to process them. Unfortunately, this is not what happens in
the context of UI mashups. In fact, there are still many different ways to look at the

problem and, hence, each tool or programmer uses its own way of componentizing
UIs (both in JavaScript inside the browser and in other languages in the web server)
and of integrating them into the overall layout of the mashup. As a consequence, UI
components are not compatible among mashup tools, and we are far from common
concepts and approaches when it comes to UI mashups.

Given for granted that UI components are able to encapsulate and deliver pieces of
UIs that can be embedded into a mashup and operated by its users, the key ingredient
for UI componentization we identify is the component’s ability to interoperate with
its surroundings, i.e., with other UI components and the hosting mashup logic. Inter-
operability is needed to enable components to synchronize upon state changes, e.g., in
response to user interactions or internal logics. While technically this is not a huge
challenge, conceptually it is not trivial to understand which communication paradigm
to adopt, which distribution logic to support, or which data format to choose,
maximizing at the same time the reusability of UI components across different
mashup platforms, also fostering interoperability among mashups themselves.

In this paper, we approach these challenges by leveraging on a UI
componentization technology that we believe will have a major impact in the near
future, i.e., W3C’s Widgets [4]. This choice is motivated, firstly, by the
comprehensiveness of W3C’s Widgets specifications family which tries to cover
models and functionalities proper of the most used widget technologies existing so
far, e.g., Google gadgets, Yahoo widgets and, in particular, Open Social gadgets.
Moreover, the W3C consortium is a leading actor in web standards creation and its
proposal already attracted important vendors that are implementing W3C’s Widget
compliant tools (e.g., Apache Wookie and Rave).

Specifically, in this paper, we provide the following contributions:
− We discuss three types of mashup logics for widgets and identify a set of

requirements the widgets should satisfy, in order for them to be mashed up.
− We propose an extension of the W3C widget model expressed in terms of an

API extension and set of expected behaviours.
− We report on our experience with the implementation of a UI mashup

following one of the described mashup logics and the extended widget
model.

Before going into the details of our proposal, in the next section we briefly
summarize the logic of and technologies used in the implementation of W3C widgets.
Then, in Section 3, we investigate the basic mashup types for widgets. In Section 4
we specifically look at one type of mashups and derive a set of requirements for
widgets. In Section 5 we propose an according extension of the W3C widget model,
also providing concrete implementation examples. Finally, in Section 6 we discuss
related works, in order to conclude the paper in Section 7.

2 W3C Widgets

The World Wide Web Consortium (W3C) provides a set of specifications collectively
known as the Widget family of specifications. A Widget is defined by W3C
(http://dev.w3.org/2006/waf/widgets-land/) as “an end-user’s conceptualization of an

interactive single purpose application for displaying and/or updating local data or data
on the Web, packaged in a way to allow a single download and installation on a user’s
machine or mobile device.”

Widgets are made available to users by a widget runtime (also known as a widget
engine). A widget runtime is an application that can import a widget that has been
packaged according to the W3C Widgets: Packaging and Configuration specification
[4]; the runtime may also make available at runtime any script objects required by the
widget, for example the W3C Widget Interface [5] (the API a widget exposes to
provide access to the widget’s metadata and to persistently store data) or W3C Device
APIs [6] (client-side APIs that enable the development of widgets that interact with
device services like calendar, contacts, or camera). Widget runtimes are available on
mobile devices, as desktop applications, or for embedding widgets in websites.

The Packaging and Configuration specification defines the metadata terms used to
describe the widget (such as name, author and description) and to enable the
configuration of the widget runtime. Configuration information includes the <feature>
element, which can be used by the widget author to request that the widget runtime
makes additional features available when the widget is running; examples of features
include JavaScript APIs, libraries, and video codecs.

Within the W3C Widget family of specifications, widgets are largely
conceptualized as operating independently, communicating with the widget runtime
using the Widget Interface and with the client environment using standard browser
features such as the Document Object Model and related JavaScript APIs.

While a widget runtime may render multiple widgets to the user simultaneously –
for example, on the Home screen of a mobile device, or as part of the layout of a
portal or social networking site – there are no mechanisms specified by the W3C
Widget family of specifications by which the widgets communicate with each other as
members of a mashup.

3 User Interface Mashups

Given a set of widgets that comply with the W3C Widget family of specifications, the
question is therefore how a mashup of widgets could look like. Considering the state
of the art in which widgets do not support inter-widget communications, we define a
basic UI mashup, as a tuple ! = 〈!,!,!"〉 with:
• ! = !,! being the layout of the mashup, of which ! is the layout template

(typically the template consists of an HTML page, a set of JavaScript and
image files, and one or more CSS style sheets) and ! = !! is the set of
viewports inside ! that can be used for the rendering of the widgets (e.g.,
iframes or div elements);

• ! = !! being the set of widgets in the mashup, where each widget is of type
!! = 〈!!! , !"#!! ,!"#$! , !"#$%&!! , ℎ!"#ℎ!! ,!"#$ℎ!〉 with !"#$! being a set of
configuration preferences (typically, name-value pairs); and

• !" = !"!|!"! ∈ !×! being the set of widget-viewport associations
needed for placing and rendering the widgets inside the mashup.

This model focuses on the layout only and is clearly not able to represent UI
mashups like most of the ones that can be found on programmableweb.com. In fact,
UI mashups typically are able to synchronize their widgets or UI elements upon user
interactions, a feature that is missing in mashups of type ! above.

Assuming now that widgets are able to communicate, in the following subsections
we define three UI mashup models that are able to deal with inter-widget
communications and to support widget synchronization:

• Orchestrated UI mashups, where the interactions between the widgets in the
mashup are defined using a central control logic;

• Choreographed UI mashups, where the interactions between the widgets in
the mashup are not defined, but instead emerge in a distributed fashion from
the internal capabilities of the widgets;

• Hybrid UI mashups, where the emerging behaviour of a choreographed UI
mashup is modified by inhibiting individual behaviours, practically
constraining the ad-hoc nature of choreographed UI mashups.

We define each of these mashup types in the following, while in the rest of this
paper we will specifically focus on orchestrated UI mashups, which can be considered
the basis also for the development of the other two types of UI mashups.

3.1 Orchestrated UI Mashups

We define an orchestrated UI mashup as a tuple !! = 〈!,!,!",!〉 with:
• ! being the layout as defined before;
• ! = !!|!! = 〈!!! , !"#!! ,!"#$! , !"#!"#!! , ℎ!"#ℎ!! ,!"#$ℎ! ,!! ,!!〉 being

the set of widgets with !! = !!"|!!" = 〈!"#!!" ,!!"〉 being the set of events
the widget can generate, !! = !!"|!!" = 〈!"#!!",!!"〉 being the set of
operations supported by the widget, and !!" and !!", respectively, being the
sets of output and input parameters;

• !" = !"!|!"! ∈ !×! being the set of widget-viewport associations; and
• ! = !!|!! ∈ !×!,! = !!! ,! = !!! being the set of direct inter-widget

communications, i.e., message flows between two widgets connecting an event
of the source widget with an operation of the target widget.

This definition of UI mashup implies that the mashup (and, therefore, the mashup
developer) knows which events are to be mapped to which operations and that it is
able to propagate the respective data items on behalf of the user of the mashup. This is
common practice, e.g., in web service composition languages like BPEL, and does not
require the widgets to know about each other.

The strength of this model is that mashups behave as they are expected to, that is,
as specified in the mashup specification. A drawback is that this central mashup logic
must be specified in advance, i.e., before runtime, which require a good knowledge of
the used widgets by the mashup developer.

Note that in the above definition and in the following we intentionally do not
introduce complex data mappings (e.g., requiring data transformation logics) or
service components (e.g., requiring to follow web servie protocols), in order to keep

the model simple and focused. We however assume each inter-widget communication
!! also contains the necessary mapping of event outputs to operation inputs.

We believe UI mashups are good candidates for end user development and that
data transformations or web services are not intuitive enough to them in order to
profitably use them inside a mashup. Possible complex data transformations or
service composition logics can always be developed by more skilled developers and
plugged in in the form of dedicated widgets.

3.2 Choreographed UI Mashups

We define a choreographed UI mashup as a tuple !! = 〈!,!,!,!"〉 with:
• ! being the layout of the mashup;
• ! = !!|!! = 〈!"#!!,!!〉 being the reference topic ontology for events and

operations, i.e., the set of concepts and associated parameters !! the widgets in
the mashup can consume as input or produce as output;

• ! = !!|!! = 〈!!! , !"!!! ,!"#$! , !"#!"#!! , ℎ!"#ℎ!! ,!"#$ℎ! ,!! ,!!〉 being
the set of widgets with !! = !!"|!!" = 〈!"#!!" ,!"#$%!"〉 being the set of
events the widget can generate, !! = !!"|!!" = 〈!"#!!",!"#$%!"〉 being
the set of operations supported by the widget, and !"#$%!" ,!"#$%!" ⊆ !,
respectively, being the set of topics an event sends data to and an operation
reacts to; and

• !" = !"!|!"! ∈ !×! being the of widget-viewport associations.
In contrast to orchestrated UI mashups, choreographed UI mashups do not have an

explicitly defined set of mappings of operations and events. Instead, each widget is
capable of sending and receiving communications and of acting on them
independently. Interoperability is achieved in that each widget complies with the
reference topic ontology !, which provides a reference terminology and semantics
each widget is able to understand. The behaviour of a choreographed UI mashup,
therefore, is not modelled centrally by the mashup developer and rather emerges in a
distributed way by placing one widget after the other into the mashup. That is, only
placing a widget into the mashup allows the developer to understand how it behaves
in the mashups and which features it supports.

The strength of this approach is that there is no need for explicit design of
interactions: a developer simply drops widgets into his mashup and they
autonomously interact. One weakness is that the reference topic ontology must be
“standardized” (or, at least, understood by all widgets), in order for any meaningful
communication to occur. This may reduce the overall richness of communication
possible to a small number of fairly primitive topics – for example, location, dates and
unstructured text. Another weakness is that with no predefined “plan” of the mashup,
there could be the risk of the emergent behaviour of the widgets being pathological –
for example, self-reinforcing loops or hunting. This could be a serious problem where
the mashup components have real-world consequences, such as SMS-sending widgets
or similar.

3.3 Hybrid UI Mashups

We define a hybrid UI mashup as a tuple !ℎ = 〈!,!,!,!",!〉 with:
• ! being the layout of the mashup;
• ! = !!|!! = 〈!"#!!,!!〉 being the reference topic ontology;
• ! = !!|!! = 〈!!! , !"#!! ,!"#$! , !"#!"#!! , ℎ!"#ℎ!! ,!"#$ℎ! ,!! ,!!〉 being

the set of widgets with !! = !!"|!!" = 〈!"#!!" ,!"#$%!"〉 being the set of
events the widget can generate and !! = !!"|!!" = 〈!"!!!",!"#$%!"〉
being the set of operations supported by the widget;

• !" = !"!|!"! ∈ !×! being the set of widget-viewport associations; and
• ! = !!|!! ∈ !×!,! = !!! being a set of constraints preventing

operations from reacting to the publication of an event referring to a given
topic.

In hybrid UI mashups, integration is achieved in a bottom-up fashion by the
widgets themselves, while there is still the possibility for the mashup developer to
control the interaction logic of the overall mashup in a top-down fashion by inhibiting
interactions and, hence, application features that are not necessary for the
implementation of his mashup idea.

The strength of this approach is that it brings together the benefits of both
orchestrated and choreographed UI mashups, that is, simplicity of development and
control of the behaviour. On the downside, the overall mashup logic is buried inside
two opposite composition logics: the implicit capabilities of the widgets and the
explicit constraints by the developer. This may be perceived as non-intuitive by less
skilled developers or end users.

4 A W3C Widget Extension for Orchestrated UI Mashups

As a first step toward supporting the above UI mashup types, in this paper we aim at
enabling the development of orchestrated UI mashups, a task that is already not
possible with the W3C widget model as is. From the definition of mo above we can, in
fact, derive a set of extension requirements for W3C widgets, without which the
implementation of interactive UI mashups is not possible:

1. Widgets must be able to communicate internal state changes via events to the
outside world, i.e., the mashup or other widgets in the mashup. That is, while
the users interacts with the widget, the widget must implement an internal
logic that tells the widget when it should raise an event, in order to allow
other widgets in a same mashup to synchronize.

2. Widgets must be able to accept inputs via operations, in order to allow the
outside world to enact widget-internal state changes. The enacting of an
operation is the natural counterpart of an event being raised. Typically, the
operation implements the necessary logic to synchronize the state of the
widget (e.g., the content rendered in the widget’s viewport) with the event.

3. The data formats for the data exchanged among widgets should be kept as

simple as possible (we propose simple name-value pairs), in order to ease
inter-widget communication. Considering that synchronizing widgets based
on user interactions or internal state changes typically will require only the
transfer of one or two parameters [3], e.g., an object identifier upon a
selection operated by the user, this assumption seems reasonable. Remember
that here we do not focus on web service orchestration or data processing.

We approach each of these requirements in the following sections and show how
so extended widgets can be mashed up into UI mashups.

5 A Prototype Implementation

In order to better explain our ideas, in the following we adopt a by-example approach
and contextualize them in our prototype implementation, finally also showing how the
extended widget model can be successfully used for the implementation of
orchestrated UI mashups.

5.1 Widget configuration

The W3C Widgets: Packaging and Configuration specification supports the run-time
loading of extensions using the <feature> element of the widget’s config.xml file.
This requires that the widget runtime environment can resolve the URI of the feature
to an installed capability. For example, given the feature URI http://example.org/rpc a
runtime may install an implementation specific to that runtime environment, or a
generic one if the functionality is relatively simple. If the URI is not recognized, the
runtime will reject the installation of the widget if the required attribute is set to
“true”, but will proceed (optionally warning the user) if it is set to “false”.

However, it is also possible for a W3C Widget to load capabilities dynamically
while running, using <script src> elements in the HTML start file or using lazy
loading techniques to dynamically insert new <script> elements based on the current
context. Therefore for an orchestration interface we have to make a decision as to
which approach to take in loading the required capabilities. Each has its advantages
and disadvantages.

An advantage of using <feature> loading is that it gives the runtime environment
the option to use server-side capabilities or augmented functionality. For example, to
load an API in the widget that then talks to a high-performance server-side messaging
service. The disadvantage is that if the runtime does not support the feature, then the
widget is either not able to be installed, or is installed without necessary functionality.
The advantage of using HTML-based script loading is that it should work in any
widget runtime environment; however it is not able to take advantage of any special
capabilities of the runtime. A compromise solution is to use the <feature> declaration
but to set the required attribute to “false”, and provide a dynamic <script> tag loader
as a fallback. This enables the widget to take advantage of native runtime
implementations, but has a fallback option if none is provided. This can be
implemented using a fairly simple script in the widget, as illustrated in Figure 1.

If (widget.intercom && typeof(widget.intercom)==function){
 // the runtime has provided the intercom API
} else {
 // load the fallback library – in this case PMRPC
 widget.intercom = loader.load(“pmrpc.js”);
}

Figure 1. Widget-internal JavaScript logic to decide whether to load a fallback library or not.

5.2 Widget interface

We enable widgets to participate in orchestrated UI mashups through the specification
of a so-called Intercom interface as an extension of the W3C Widget Interface. An
implementation of the Intercom object must have the following three capabilities:

• It must be able to execute operations on the widget;
• It must be able to raise events; and
• It must be able to expose metadata about the operations and events

supported by the widget.
The implementation of the Intercom interface may be made available at runtime

through the use of a <feature> element in the widget configuration document or as a
direct extension to the W3C Widget Interface specification implemented by the
widget runtime.

The Intercom does not specify any orchestration configuration, but the capabilities
of the orchestration participants and an interface to access the inter-widget
communication features of the Intercom implementation. Therefore, we propose to
introduce an attribute intercom to the W3C Widget Interface (see Figure 2).

[NoInterfaceObject]
interface Widget {
 readonly attribute DOMString author;
 readonly attribute DOMString authorEmail;
 readonly attribute DOMString authorHref;
 readonly attribute DOMString description;
 readonly attribute DOMString id;
 readonly attribute DOMString name;
 readonly attribute DOMString shortName;
 readonly attribute Storage preferences;
 readonly attribute DOMString version;
 readonly attribute unsigned long height;
 readonly attribute unsigned long width;
 readonly attribute Intercom intercom;
};

Figure 2 Widget interface extended with intercom attribute

The Intercom interface itself is defined as described in Figure 3: Inspecting the
metadata attribute of the Intercom interface allows the widget runtime environment
to obtain the list of events and operations implemented by the widget, along with their
respective output/input parameters. The two functions raise and call can then be
used to generate an event and to enact an operation, respectively.

interface Intercom {
 void raise(in DOMString operationName, in optional DOMString param1, ...);
 void call(in DOMString operationName, in optional DOMString param1, ...);
 readonly attribute IntercomMetaData metadata;
}
interface IntercomMetaData {
 readonly attribute sequence<IntercomSignature> events;
 readonly attribute sequence<IntercomSignature> operations;
}
interface IntercomSignature {
 readonly attribute DOMString name;
 readonly attribute sequence<IntercomArgument> parameters;
}
interface IntercomArgument {
 readonly attribute DOMString name;
}

Figure 3. A possible Intercom interface, including access functions and metadata structures.

For instance, Figure 4 exemplifies how a widget can use its Intercom to raise the
events “eventName”, and how an external RPC module (e.g., the one used by the
specific Intercom implementation) can use the widgets’ intercoms to call operations.

//called from widget
this.intercom.raise(“eventName”, arg1, arg2);

//called from communication module
widget.intercom.call(“operationName”, arg1, arg2);

Figure 4. Using the intercom object.

With the help of the Intercom interface, an automatic composition component or a
composition tool can use the metadata attribute of several widgets to learn about the
composition capabilities that the widget supports.

To keep the Intercom interface as simple as possible, we do not support operation
return types or complex parameter types.

5.3 Widget implementation and behaviour

In Figure 5 we provide a possible implementation of the Intercom interface, which
makes use of the external communication infrastructure (SOMERPC) declared as
required <feature> in the widget configuration.

var SOMERPC = {/* some rpc module required by this Intercom implementation */};

var Intercom = function(widget) {
 var w = widget,
 rpcmodule = SOMERPC,
 operations = {},

 // reads the meta data from a config file, xml, etc.
 metadata = rpcmodule.getMetaData(w.name),
 raise = function(eventName){ //init public raiseEvent method
 var args = Array.prototype.splice.apply(arguments, 1,
 arguments.length-1);

 rpcmodule.raiseEvent(w, eventName, args);
 },
 call = function(opName){
 var args = Array.prototype.splice.apply(arguments, 1,
 arguments.length-1);
 //call widget operation if it is in the public operations
 if(operations[opName]) {
 operations[opName].apply(w, args);
 }
 },
 i = 0;

 //setup the private operations list for faster access when 'call' is executed
 for(i = 0; i < metadata.operations.length; i += 1) {
 operations[metadata.operation[i].name] = w[metadata.operation[i]];
 }

 this.raise = raise;
 this.call = call;
 this.metadata = metadata;

 //register this intercom at the rpc module
 rpcmodule.register(this);
};

Figure 5. A basic implementation of the Intercom interface.

The Intercom of a widget should be initialized in the widget constructor to prevent
modifications from the outside:

// called from the widget contructor
this.intercom = new Intercom(this);

After the intercom is set up, a widget can start raising events via its own Intercom,
and all modules that have access to the widget or the widget’s Intercom can call
operations on the widget.

5.4 UI mashup implementation

Using the formalization introduced in Section 3, we are able to model a variety of
mashups involving multiple widgets. The specification does not include any
additional runtime aspects, such as message delivery time, message buffering, or
similar technical aspects. Thereby, it is flexible enough to also accomodate mashups
with more complex characteristics, such as mashups involving multiple windows or
multiple origins, and it is agnostic as to whether communication is purely within the
browser (e.g., using HTML 5 PostMessage) or also involving the server side.

Implementing a UI mashups can be achieved relatively simply through the use of
publish-subscribe services propagating events from one widget to others. In
orchestrated UI mashups of type !! = 〈!,!,!",!〉, it is the inter-widget
communication logic ! that subscribes widgets, i.e., their operations, to events. In
choreographed UI mashups of type !! = 〈!,!,!,!"〉, each widget publishes its
events to the topics in ! and subscribes to the topics it understands. In hybrid UI
mashups !ℎ = 〈!,!,!,!",!〉, the bottom-up subscriptions by the widgets can be
fine-tuned via the constraints !. All this can implemented using a range of existing

mature software technologies, for example, client-side using OpenAjax Hub1 or
server-side using solutions such as Faye2 or ActiveMQ3.

6 Related Work

In our former work [8], we developed an approach to the componentization and
intercommunication of UI components. The approach is different from the one
proposed in this paper, in that it aims to wrap full-fledged web applications developed
with traditional, server-side web technologies. The wrapping logic requires the
presence of simple event annotations inside the application’s HTML markup in order
to intercept events and a descriptor for the enacting of operations on the wrapped web
app. Widgets, instead, are pure client-side apps.

In the context of widgets, Sire et al. [7] proposed an idea that is similar to what we
propose in this paper, also advocating the use of events and event listeners (the
equivalent of our operations). The widget decides whether an event is distributed in a
unicast (one receiver), multicast (multiple receivers), or broadcast (all possible
receivers) fashion. This design choice, however, leads to tightly coupled widgets, in
that a widget must know in advance with which other and how many widgets it will
communicate, a limitation we do not have in our proposal. In fact, in our case it is the
mashup logic (which, for choreographed UI mashups, may be missing) that manages
the inter-widget communication, and widgets are unaware of their neighbours.

The Java Portlet Specification 2.0 [9] proposes inter-widget communication for
web portals. Portlets may communicate via events, but interactions occur on the
server-side, a strong limitation in a UI-intensive Web 2.0 context. So far, the adoption
of this technique is relatively low, also because its limitation to the Java world.

Communicating across technical boundaries, as proposed in this paper, is required
in many networked computing domains. Especially for web browsers, the
communication across domains and across browser windows (including iframes) is an
important issue. Therefore, the HTML 5 standard defines a messaging API [10],
which is, for example, used by the “pmrpc” project [11]. This project provides a
Javascript module that adds a pmrpc object to a running website window object. All
scripts running inside this window may access pmrpc to register own operations, or
make calls to other windows/frames [12].

Our investigation of these and similar RPC approaches showed that different
projects use different interface syntax and mainly focus on cross-window
communication. In comparison to that, our proposed interface extension does not
specify any cross-domain/window aspects. A single widget, in our case, is similar to a
window in these related approaches, but there can be many widgets in many windows
that constitute a mashup. All widgets will use their intercom transparently. Cross-
domain issues must be solved internally by the Intercom implementation, which may
of course use, e.g., pmrpc internally for this aspect.

1 http://www.openajax.org/whitepapers/Introducing%20OpenAjax%20Hub%202.0%

20and%20Secure%20Mashups.php
2 http://faye.jcoglan.com/
3 http://activemq.apache.org/

7 Conclusion and Future Work

In this paper, we addressed a relevant issue in UI-based mashup development, i.e., the
intercommunication of W3C widgets. Mashups are typically heavily UI-based, but so
far no standard for how to componentize UIs and how to get them into
communication has emerged. We believe W3C widgets have the potential to represent
this agreement and that they will gain importance in the near future in both desktop
and mobile computing environments.

The aim of our research in this context is to come up with an inter-widget
communication interface and respective widget behaviours, which – thanks to our
involvement in the standardization of the widget technology – we would like to
propose to the W3C for standardization. This is an effort we carry on in the context of
the European project Omelette (http://www.ict-omelette.eu).

In order to obtain a first feedback from the community regarding the proposed
communication interface, in this paper we focused on inter-widget communication at
the level of events and operations. In the future, we also aim to identify and propose a
standard format for the exchange of data among widgets, e.g., based on the OData
protocol or similar initiatives.

Acknowledgements: This work was supported by funds from the European
Commission (project OMELETTE, contract no. 257635).

References

1. M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl, L. Mau, Y.-H. Ng, D.
Simmen, and A. Singh. Damia: a data mashup fabric for intranet applications. VLDB'07,
September 2007, VLDB Endowment, pp. 1370-1373.

2. R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, P. Gandhi. Intel Mash Maker: join the
web. SIGMOD Rec. 36, 4, December 2007, pp. 27-33.

3. F. Daniel, F. Casati, B. Benatallah, M.-C. Shan. Hosted Universal Composition: Models,
Languages and Infrastructure in mashArt. ER'09, November 2009, Springer, pp. 428-443.

4. W3C. Widget Packaging and Configuration. W3C Working Draft, March 2011, http://www.
w3.org/TR/widgets/

5. W3C. The Widget Interface. W3C Working Draft, September 2010, http://www.w3.org/TR/
widgets-apis/

6. W3C. Device APIs and Policy Working Group Charter. http://www.w3.org/2009/05/Device
APICharter

7. S. Sire, M. Paquier, A. Vagner, J. Bogaerts. A Messaging API for Inter-Widgets Communi-
cation. WWW’09, April 2009, ACM, pp. 1115-1116.

8. F. Daniel and M. Matera. Turning Web Applications into Mashup Components: Issues,
Models, and Solutions. ICWE’09, June 2009, Springer, pp. 45-60.

9. S. Hepper. Java(TM) Portlet Specification Version 2.0. Proposed Final Draft, Rev. 29.
http://jcp.org/aboutJava/communityprocess/pfd/jsr286/index.html

10. WHATWG. HTML Living Standard, Communication. WHATWG specification. Website,
April 2011: http://www.whatwg.org/specs/web-apps/current-work/multipage/comms.html

11. I. Kovic and I. Zuzak. Pmrpc, HTML5 inter-window and web workers RPC and pubsub
communication library. Project website, April 2011: http://code.google.com/p/pmrpc/.

12. I. Kovic and I. Zuzak. List of system that enable inter-window or web worker
communication. Website, April 2011: http://code.google.com/p/pmrpc/wiki/IWCProjects.

